Compare commits

..

5 Commits

Author SHA1 Message Date
556be08c4e Implement PM GetProcessInfo atmosphere extension (partially) (#2966) 2022-05-03 23:28:32 +02:00
1cbca5eecb Implement code memory syscalls (#2958)
* Implement code memory syscalls

* Remove owner process validation

* Add 32-bit code memory syscalls

* Remove unused field
2022-05-03 13:16:31 +02:00
95017b8c66 Support memory aliasing (#2954)
* Back to the origins: Make memory manager take guest PA rather than host address once again

* Direct mapping with alias support on Windows

* Fixes and remove more of the emulated shared memory

* Linux support

* Make shared and transfer memory not depend on SharedMemoryStorage

* More efficient view mapping on Windows (no more restricted to 4KB pages at a time)

* Handle potential access violations caused by partial unmap

* Implement host mapping using shared memory on Linux

* Add new GetPhysicalAddressChecked method, used to ensure the virtual address is mapped before address translation

Also align GetRef behaviour with software memory manager

* We don't need a mirrorable memory block for software memory manager mode

* Disable memory aliasing tests while we don't have shared memory support on Mac

* Shared memory & SIGBUS handler for macOS

* Fix typo + nits + re-enable memory tests

* Set MAP_JIT_DARWIN on x86 Mac too

* Add back the address space mirror

* Only set MAP_JIT_DARWIN if we are mapping as executable

* Disable aliasing tests again (still fails on Mac)

* Fix UnmapView4KB (by not casting size to int)

* Use ref counting on memory blocks to delay closing the shared memory handle until all blocks using it are disposed

* Address PR feedback

* Make RO hold a reference to the guest process memory manager to avoid early disposal

Co-authored-by: nastys <nastys@users.noreply.github.com>
2022-05-02 20:30:02 -03:00
4a892fbdc9 Fix flush action from multiple threads regression (#3311)
If two or more threads encounter a region of memory where a read action has been registered, then they must _both_ wait on the data.

Clearing the action before it completed was causing the null check above to fail, so the action would only be run on the first thread, and the second would end up continuing without waiting. Depending on what the game does, this could be disasterous.

This fixes a regression introduced by #3302 with Pokemon Legends Arceus, and possibly Catherine. There are likely other affected games. What is fixed in that PR should still be fixed.
2022-05-02 12:31:53 +02:00
9eb5b7a10d Restrict cases where vertex buffer size from index buffer type is used (#3304) 2022-05-01 11:12:34 -03:00
52 changed files with 3085 additions and 2226 deletions

View File

@ -103,7 +103,7 @@ namespace ARMeilleure.Signal
// Unix siginfo struct locations.
// NOTE: These are incredibly likely to be different between kernel version and architectures.
config.StructAddressOffset = 16; // si_addr
config.StructAddressOffset = OperatingSystem.IsMacOS() ? 24 : 16; // si_addr
config.StructWriteOffset = 8; // si_code
_signalHandlerPtr = Marshal.GetFunctionPointerForDelegate(GenerateUnixSignalHandler(_handlerConfig));

View File

@ -21,6 +21,7 @@ namespace ARMeilleure.Signal
static class UnixSignalHandlerRegistration
{
private const int SIGSEGV = 11;
private const int SIGBUS = 10;
private const int SA_SIGINFO = 0x00000004;
[DllImport("libc", SetLastError = true)]
@ -43,7 +44,17 @@ namespace ARMeilleure.Signal
if (result != 0)
{
throw new InvalidOperationException($"Could not register sigaction. Error: {result}");
throw new InvalidOperationException($"Could not register SIGSEGV sigaction. Error: {result}");
}
if (OperatingSystem.IsMacOS())
{
result = sigaction(SIGBUS, ref sig, out SigAction oldb);
if (result != 0)
{
throw new InvalidOperationException($"Could not register SIGBUS sigaction. Error: {result}");
}
}
return old;
@ -51,7 +62,7 @@ namespace ARMeilleure.Signal
public static bool RestoreExceptionHandler(SigAction oldAction)
{
return sigaction(SIGSEGV, ref oldAction, out SigAction _) == 0;
return sigaction(SIGSEGV, ref oldAction, out SigAction _) == 0 && (!OperatingSystem.IsMacOS() || sigaction(SIGBUS, ref oldAction, out SigAction _) == 0);
}
}
}

View File

@ -8,7 +8,7 @@ namespace ARMeilleure.Translation
/// </summary>
/// <typeparam name="K">Key</typeparam>
/// <typeparam name="V">Value</typeparam>
public class IntervalTree<K, V> where K : IComparable<K>
class IntervalTree<K, V> where K : IComparable<K>
{
private const int ArrayGrowthSize = 32;
@ -53,7 +53,7 @@ namespace ARMeilleure.Translation
/// <returns>Number of intervals found</returns>
public int Get(K start, K end, ref K[] overlaps, int overlapCount = 0)
{
GetValues(_root, start, end, ref overlaps, ref overlapCount);
GetKeys(_root, start, end, ref overlaps, ref overlapCount);
return overlapCount;
}
@ -180,20 +180,20 @@ namespace ARMeilleure.Translation
}
/// <summary>
/// Retrieve all values that overlap the given start and end keys.
/// Retrieve all keys that overlap the given start and end keys.
/// </summary>
/// <param name="start">Start of the range</param>
/// <param name="end">End of the range</param>
/// <param name="overlaps">Overlaps array to place results in</param>
/// <param name="overlapCount">Overlaps count to update</param>
private void GetValues(IntervalTreeNode<K, V> node, K start, K end, ref K[] overlaps, ref int overlapCount)
private void GetKeys(IntervalTreeNode<K, V> node, K start, K end, ref K[] overlaps, ref int overlapCount)
{
if (node == null || start.CompareTo(node.Max) >= 0)
{
return;
}
GetValues(node.Left, start, end, ref overlaps, ref overlapCount);
GetKeys(node.Left, start, end, ref overlaps, ref overlapCount);
bool endsOnRight = end.CompareTo(node.Start) > 0;
if (endsOnRight)
@ -208,7 +208,7 @@ namespace ARMeilleure.Translation
overlaps[overlapCount++] = node.Start;
}
GetValues(node.Right, start, end, ref overlaps, ref overlapCount);
GetKeys(node.Right, start, end, ref overlaps, ref overlapCount);
}
}
@ -717,40 +717,40 @@ namespace ARMeilleure.Translation
/// </summary>
/// <typeparam name="K">Key type of the node</typeparam>
/// <typeparam name="V">Value type of the node</typeparam>
internal class IntervalTreeNode<K, V>
class IntervalTreeNode<K, V>
{
internal bool Color = true;
internal IntervalTreeNode<K, V> Left = null;
internal IntervalTreeNode<K, V> Right = null;
internal IntervalTreeNode<K, V> Parent = null;
public bool Color = true;
public IntervalTreeNode<K, V> Left = null;
public IntervalTreeNode<K, V> Right = null;
public IntervalTreeNode<K, V> Parent = null;
/// <summary>
/// The start of the range.
/// </summary>
internal K Start;
public K Start;
/// <summary>
/// The end of the range.
/// </summary>
internal K End;
public K End;
/// <summary>
/// The maximum end value of this node and all its children.
/// </summary>
internal K Max;
public K Max;
/// <summary>
/// Value stored on this node.
/// </summary>
internal V Value;
public V Value;
public IntervalTreeNode(K start, K end, V value, IntervalTreeNode<K, V> parent)
{
this.Start = start;
this.End = end;
this.Max = end;
this.Value = value;
this.Parent = parent;
Start = start;
End = end;
Max = end;
Value = value;
Parent = parent;
}
}
}

View File

@ -1,7 +1,5 @@
using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics.CodeAnalysis;
using System.Linq;
namespace Ryujinx.Common.Collections
@ -212,7 +210,7 @@ namespace Ryujinx.Common.Collections
/// <param name="overlaps">Overlaps array to place results in</param>
/// <param name="overlapCount">Overlaps count to update</param>
private void GetValues(IntervalTreeNode<K, V> node, K start, K end, ref V[] overlaps, ref int overlapCount)
{
{
if (node == null || start.CompareTo(node.Max) >= 0)
{
return;
@ -624,7 +622,7 @@ namespace Ryujinx.Common.Collections
node.Right = LeftOf(right);
if (node.Right != null)
{
node.Right.Parent = node;
node.Right.Parent = node;
}
IntervalTreeNode<K, V> nodeParent = ParentOf(node);
right.Parent = nodeParent;
@ -638,7 +636,7 @@ namespace Ryujinx.Common.Collections
}
else
{
nodeParent.Right = right;
nodeParent.Right = right;
}
right.Left = node;
node.Parent = right;
@ -779,37 +777,37 @@ namespace Ryujinx.Common.Collections
/// </summary>
/// <typeparam name="K">Key type of the node</typeparam>
/// <typeparam name="V">Value type of the node</typeparam>
internal class IntervalTreeNode<K, V>
class IntervalTreeNode<K, V>
{
internal bool Color = true;
internal IntervalTreeNode<K, V> Left = null;
internal IntervalTreeNode<K, V> Right = null;
internal IntervalTreeNode<K, V> Parent = null;
public bool Color = true;
public IntervalTreeNode<K, V> Left = null;
public IntervalTreeNode<K, V> Right = null;
public IntervalTreeNode<K, V> Parent = null;
/// <summary>
/// The start of the range.
/// </summary>
internal K Start;
public K Start;
/// <summary>
/// The end of the range - maximum of all in the Values list.
/// </summary>
internal K End;
public K End;
/// <summary>
/// The maximum end value of this node and all its children.
/// </summary>
internal K Max;
public K Max;
internal List<RangeNode<K, V>> Values;
public List<RangeNode<K, V>> Values;
public IntervalTreeNode(K start, K end, V value, IntervalTreeNode<K, V> parent)
{
this.Start = start;
this.End = end;
this.Max = end;
this.Values = new List<RangeNode<K, V>> { new RangeNode<K, V>(start, end, value) };
this.Parent = parent;
Start = start;
End = end;
Max = end;
Values = new List<RangeNode<K, V>> { new RangeNode<K, V>(start, end, value) };
Parent = parent;
}
}
}

View File

@ -921,10 +921,10 @@ namespace Ryujinx.Common.Collections
public bool IsReadOnly => false;
public V this[K key]
{
public V this[K key]
{
get => Get(key);
set => Add(key, value);
set => Add(key, value);
}
#endregion
@ -967,20 +967,20 @@ namespace Ryujinx.Common.Collections
/// </summary>
/// <typeparam name="K">Key of the node</typeparam>
/// <typeparam name="V">Value of the node</typeparam>
internal class Node<K, V>
class Node<K, V>
{
internal bool Color = true;
internal Node<K, V> Left = null;
internal Node<K, V> Right = null;
internal Node<K, V> Parent = null;
internal K Key;
internal V Value;
public bool Color = true;
public Node<K, V> Left = null;
public Node<K, V> Right = null;
public Node<K, V> Parent = null;
public K Key;
public V Value;
public Node(K key, V value, Node<K, V> parent)
{
this.Key = key;
this.Value = value;
this.Parent = parent;
Key = key;
Value = value;
Parent = parent;
}
}
}

View File

@ -24,7 +24,7 @@ namespace Ryujinx.Cpu
_baseAddress = (ulong)_addressSpace.Pointer;
ulong endAddress = _baseAddress + addressSpace.Size;
_trackingEvent = new TrackingEventDelegate(tracking.VirtualMemoryEvent);
_trackingEvent = new TrackingEventDelegate(tracking.VirtualMemoryEventEh);
bool added = NativeSignalHandler.AddTrackedRegion((nuint)_baseAddress, (nuint)endAddress, Marshal.GetFunctionPointerForDelegate(_trackingEvent));
if (!added)

View File

@ -25,6 +25,7 @@ namespace Ryujinx.Cpu
private const int PointerTagBit = 62;
private readonly MemoryBlock _backingMemory;
private readonly InvalidAccessHandler _invalidAccessHandler;
/// <summary>
@ -50,10 +51,12 @@ namespace Ryujinx.Cpu
/// <summary>
/// Creates a new instance of the memory manager.
/// </summary>
/// <param name="backingMemory">Physical backing memory where virtual memory will be mapped to</param>
/// <param name="addressSpaceSize">Size of the address space</param>
/// <param name="invalidAccessHandler">Optional function to handle invalid memory accesses</param>
public MemoryManager(ulong addressSpaceSize, InvalidAccessHandler invalidAccessHandler = null)
public MemoryManager(MemoryBlock backingMemory, ulong addressSpaceSize, InvalidAccessHandler invalidAccessHandler = null)
{
_backingMemory = backingMemory;
_invalidAccessHandler = invalidAccessHandler;
ulong asSize = PageSize;
@ -73,18 +76,19 @@ namespace Ryujinx.Cpu
}
/// <inheritdoc/>
public void Map(ulong va, nuint hostAddress, ulong size)
public void Map(ulong va, ulong pa, ulong size)
{
AssertValidAddressAndSize(va, size);
ulong remainingSize = size;
ulong oVa = va;
ulong oPa = pa;
while (remainingSize != 0)
{
_pageTable.Write((va / PageSize) * PteSize, hostAddress);
_pageTable.Write((va / PageSize) * PteSize, PaToPte(pa));
va += PageSize;
hostAddress += PageSize;
pa += PageSize;
remainingSize -= PageSize;
}
Tracking.Map(oVa, size);
@ -107,7 +111,7 @@ namespace Ryujinx.Cpu
ulong remainingSize = size;
while (remainingSize != 0)
{
_pageTable.Write((va / PageSize) * PteSize, (nuint)0);
_pageTable.Write((va / PageSize) * PteSize, 0UL);
va += PageSize;
remainingSize -= PageSize;
@ -123,8 +127,21 @@ namespace Ryujinx.Cpu
/// <inheritdoc/>
public T ReadTracked<T>(ulong va) where T : unmanaged
{
SignalMemoryTracking(va, (ulong)Unsafe.SizeOf<T>(), false);
return MemoryMarshal.Cast<byte, T>(GetSpan(va, Unsafe.SizeOf<T>()))[0];
try
{
SignalMemoryTracking(va, (ulong)Unsafe.SizeOf<T>(), false);
return Read<T>(va);
}
catch (InvalidMemoryRegionException)
{
if (_invalidAccessHandler == null || !_invalidAccessHandler(va))
{
throw;
}
return default;
}
}
/// <inheritdoc/>
@ -177,7 +194,7 @@ namespace Ryujinx.Cpu
if (IsContiguousAndMapped(va, data.Length))
{
data.CopyTo(GetHostSpanContiguous(va, data.Length));
data.CopyTo(_backingMemory.GetSpan(GetPhysicalAddressInternal(va), data.Length));
}
else
{
@ -185,18 +202,22 @@ namespace Ryujinx.Cpu
if ((va & PageMask) != 0)
{
ulong pa = GetPhysicalAddressInternal(va);
size = Math.Min(data.Length, PageSize - (int)(va & PageMask));
data.Slice(0, size).CopyTo(GetHostSpanContiguous(va, size));
data.Slice(0, size).CopyTo(_backingMemory.GetSpan(pa, size));
offset += size;
}
for (; offset < data.Length; offset += size)
{
ulong pa = GetPhysicalAddressInternal(va + (ulong)offset);
size = Math.Min(data.Length - offset, PageSize);
data.Slice(offset, size).CopyTo(GetHostSpanContiguous(va + (ulong)offset, size));
data.Slice(offset, size).CopyTo(_backingMemory.GetSpan(pa, size));
}
}
}
@ -224,7 +245,7 @@ namespace Ryujinx.Cpu
if (IsContiguousAndMapped(va, size))
{
return GetHostSpanContiguous(va, size);
return _backingMemory.GetSpan(GetPhysicalAddressInternal(va), size);
}
else
{
@ -251,7 +272,7 @@ namespace Ryujinx.Cpu
SignalMemoryTracking(va, (ulong)size, true);
}
return new WritableRegion(null, va, new NativeMemoryManager<byte>((byte*)GetHostAddress(va), size).Memory);
return new WritableRegion(null, va, _backingMemory.GetMemory(GetPhysicalAddressInternal(va), size));
}
else
{
@ -264,7 +285,7 @@ namespace Ryujinx.Cpu
}
/// <inheritdoc/>
public unsafe ref T GetRef<T>(ulong va) where T : unmanaged
public ref T GetRef<T>(ulong va) where T : unmanaged
{
if (!IsContiguous(va, Unsafe.SizeOf<T>()))
{
@ -273,7 +294,7 @@ namespace Ryujinx.Cpu
SignalMemoryTracking(va, (ulong)Unsafe.SizeOf<T>(), true);
return ref *(T*)GetHostAddress(va);
return ref _backingMemory.GetRef<T>(GetPhysicalAddressInternal(va));
}
/// <summary>
@ -293,7 +314,7 @@ namespace Ryujinx.Cpu
return (int)(vaSpan / PageSize);
}
private void ThrowMemoryNotContiguous() => throw new MemoryNotContiguousException();
private static void ThrowMemoryNotContiguous() => throw new MemoryNotContiguousException();
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private bool IsContiguousAndMapped(ulong va, int size) => IsContiguous(va, size) && IsMapped(va);
@ -315,7 +336,7 @@ namespace Ryujinx.Cpu
return false;
}
if (GetHostAddress(va) + PageSize != GetHostAddress(va + PageSize))
if (GetPhysicalAddressInternal(va) + PageSize != GetPhysicalAddressInternal(va + PageSize))
{
return false;
}
@ -327,11 +348,11 @@ namespace Ryujinx.Cpu
}
/// <inheritdoc/>
public IEnumerable<HostMemoryRange> GetPhysicalRegions(ulong va, ulong size)
public IEnumerable<MemoryRange> GetPhysicalRegions(ulong va, ulong size)
{
if (size == 0)
{
return Enumerable.Empty<HostMemoryRange>();
return Enumerable.Empty<MemoryRange>();
}
if (!ValidateAddress(va) || !ValidateAddressAndSize(va, size))
@ -341,9 +362,9 @@ namespace Ryujinx.Cpu
int pages = GetPagesCount(va, (uint)size, out va);
var regions = new List<HostMemoryRange>();
var regions = new List<MemoryRange>();
nuint regionStart = GetHostAddress(va);
ulong regionStart = GetPhysicalAddressInternal(va);
ulong regionSize = PageSize;
for (int page = 0; page < pages - 1; page++)
@ -353,12 +374,12 @@ namespace Ryujinx.Cpu
return null;
}
nuint newHostAddress = GetHostAddress(va + PageSize);
ulong newPa = GetPhysicalAddressInternal(va + PageSize);
if (GetHostAddress(va) + PageSize != newHostAddress)
if (GetPhysicalAddressInternal(va) + PageSize != newPa)
{
regions.Add(new HostMemoryRange(regionStart, regionSize));
regionStart = newHostAddress;
regions.Add(new MemoryRange(regionStart, regionSize));
regionStart = newPa;
regionSize = 0;
}
@ -366,7 +387,7 @@ namespace Ryujinx.Cpu
regionSize += PageSize;
}
regions.Add(new HostMemoryRange(regionStart, regionSize));
regions.Add(new MemoryRange(regionStart, regionSize));
return regions;
}
@ -386,18 +407,22 @@ namespace Ryujinx.Cpu
if ((va & PageMask) != 0)
{
ulong pa = GetPhysicalAddressInternal(va);
size = Math.Min(data.Length, PageSize - (int)(va & PageMask));
GetHostSpanContiguous(va, size).CopyTo(data.Slice(0, size));
_backingMemory.GetSpan(pa, size).CopyTo(data.Slice(0, size));
offset += size;
}
for (; offset < data.Length; offset += size)
{
ulong pa = GetPhysicalAddressInternal(va + (ulong)offset);
size = Math.Min(data.Length - offset, PageSize);
GetHostSpanContiguous(va + (ulong)offset, size).CopyTo(data.Slice(offset, size));
_backingMemory.GetSpan(pa, size).CopyTo(data.Slice(offset, size));
}
}
catch (InvalidMemoryRegionException)
@ -446,7 +471,7 @@ namespace Ryujinx.Cpu
return false;
}
return _pageTable.Read<nuint>((va / PageSize) * PteSize) != 0;
return _pageTable.Read<ulong>((va / PageSize) * PteSize) != 0;
}
private bool ValidateAddress(ulong va)
@ -480,37 +505,20 @@ namespace Ryujinx.Cpu
}
}
/// <summary>
/// Get a span representing the given virtual address and size range in host memory.
/// This function assumes that the requested virtual memory region is contiguous.
/// </summary>
/// <param name="va">Virtual address of the range</param>
/// <param name="size">Size of the range in bytes</param>
/// <returns>A span representing the given virtual range in host memory</returns>
/// <exception cref="InvalidMemoryRegionException">Throw when the base virtual address is not mapped</exception>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private unsafe Span<byte> GetHostSpanContiguous(ulong va, int size)
private ulong GetPhysicalAddress(ulong va)
{
return new Span<byte>((void*)GetHostAddress(va), size);
}
/// <summary>
/// Get the host address for a given virtual address, using the page table.
/// </summary>
/// <param name="va">Virtual address</param>
/// <returns>The corresponding host address for the given virtual address</returns>
/// <exception cref="InvalidMemoryRegionException">Throw when the virtual address is not mapped</exception>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private nuint GetHostAddress(ulong va)
{
nuint pageBase = _pageTable.Read<nuint>((va / PageSize) * PteSize) & unchecked((nuint)0xffff_ffff_ffffUL);
if (pageBase == 0)
// We return -1L if the virtual address is invalid or unmapped.
if (!ValidateAddress(va) || !IsMapped(va))
{
ThrowInvalidMemoryRegionException($"Not mapped: va=0x{va:X16}");
return ulong.MaxValue;
}
return pageBase + (nuint)(va & PageMask);
return GetPhysicalAddressInternal(va);
}
private ulong GetPhysicalAddressInternal(ulong va)
{
return PteToPa(_pageTable.Read<ulong>((va / PageSize) * PteSize) & ~(0xffffUL << 48)) + (va & PageMask);
}
/// <inheritdoc/>
@ -604,6 +612,16 @@ namespace Ryujinx.Cpu
}
}
private ulong PaToPte(ulong pa)
{
return (ulong)_backingMemory.GetPointer(pa, PageSize);
}
private ulong PteToPa(ulong pte)
{
return (ulong)((long)pte - _backingMemory.Pointer.ToInt64());
}
/// <summary>
/// Disposes of resources used by the memory manager.
/// </summary>

View File

@ -5,7 +5,6 @@ using Ryujinx.Memory.Range;
using Ryujinx.Memory.Tracking;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.CompilerServices;
using System.Threading;
@ -14,7 +13,7 @@ namespace Ryujinx.Cpu
/// <summary>
/// Represents a CPU memory manager which maps guest virtual memory directly onto a host virtual region.
/// </summary>
public class MemoryManagerHostMapped : MemoryManagerBase, IMemoryManager, IVirtualMemoryManagerTracked
public class MemoryManagerHostMapped : MemoryManagerBase, IMemoryManager, IVirtualMemoryManagerTracked, IWritableBlock
{
public const int PageBits = 12;
public const int PageSize = 1 << PageBits;
@ -42,9 +41,12 @@ namespace Ryujinx.Cpu
private readonly MemoryBlock _addressSpaceMirror;
private readonly ulong _addressSpaceSize;
private readonly MemoryBlock _backingMemory;
private readonly PageTable<ulong> _pageTable;
private readonly MemoryEhMeilleure _memoryEh;
private ulong[] _pageTable;
private readonly ulong[] _pageBitmap;
public int AddressSpaceBits { get; }
@ -59,11 +61,14 @@ namespace Ryujinx.Cpu
/// <summary>
/// Creates a new instance of the host mapped memory manager.
/// </summary>
/// <param name="backingMemory">Physical backing memory where virtual memory will be mapped to</param>
/// <param name="addressSpaceSize">Size of the address space</param>
/// <param name="unsafeMode">True if unmanaged access should not be masked (unsafe), false otherwise.</param>
/// <param name="invalidAccessHandler">Optional function to handle invalid memory accesses</param>
public MemoryManagerHostMapped(ulong addressSpaceSize, bool unsafeMode, InvalidAccessHandler invalidAccessHandler = null)
public MemoryManagerHostMapped(MemoryBlock backingMemory, ulong addressSpaceSize, bool unsafeMode, InvalidAccessHandler invalidAccessHandler = null)
{
_backingMemory = backingMemory;
_pageTable = new PageTable<ulong>();
_invalidAccessHandler = invalidAccessHandler;
_unsafeMode = unsafeMode;
_addressSpaceSize = addressSpaceSize;
@ -79,9 +84,13 @@ namespace Ryujinx.Cpu
AddressSpaceBits = asBits;
_pageTable = new ulong[1 << (AddressSpaceBits - (PageBits + PageToPteShift))];
_addressSpace = new MemoryBlock(asSize, MemoryAllocationFlags.Reserve | MemoryAllocationFlags.Mirrorable);
_addressSpaceMirror = _addressSpace.CreateMirror();
_pageBitmap = new ulong[1 << (AddressSpaceBits - (PageBits + PageToPteShift))];
MemoryAllocationFlags asFlags = MemoryAllocationFlags.Reserve | MemoryAllocationFlags.ViewCompatible;
_addressSpace = new MemoryBlock(asSize, asFlags);
_addressSpaceMirror = new MemoryBlock(asSize, asFlags | MemoryAllocationFlags.ForceWindows4KBViewMapping);
Tracking = new MemoryTracking(this, PageSize, invalidAccessHandler);
_memoryEh = new MemoryEhMeilleure(_addressSpace, Tracking);
}
@ -136,12 +145,14 @@ namespace Ryujinx.Cpu
}
/// <inheritdoc/>
public void Map(ulong va, nuint hostAddress, ulong size)
public void Map(ulong va, ulong pa, ulong size)
{
AssertValidAddressAndSize(va, size);
_addressSpace.Commit(va, size);
_addressSpace.MapView(_backingMemory, pa, va, size);
_addressSpaceMirror.MapView(_backingMemory, pa, va, size);
AddMapping(va, size);
PtMap(va, pa, size);
Tracking.Map(va, size);
}
@ -155,7 +166,32 @@ namespace Ryujinx.Cpu
Tracking.Unmap(va, size);
RemoveMapping(va, size);
_addressSpace.Decommit(va, size);
PtUnmap(va, size);
_addressSpace.UnmapView(_backingMemory, va, size);
_addressSpaceMirror.UnmapView(_backingMemory, va, size);
}
private void PtMap(ulong va, ulong pa, ulong size)
{
while (size != 0)
{
_pageTable.Map(va, pa);
va += PageSize;
pa += PageSize;
size -= PageSize;
}
}
private void PtUnmap(ulong va, ulong size)
{
while (size != 0)
{
_pageTable.Unmap(va);
va += PageSize;
size -= PageSize;
}
}
/// <inheritdoc/>
@ -216,6 +252,7 @@ namespace Ryujinx.Cpu
}
}
/// <inheritdoc/>
public void Write<T>(ulong va, T value) where T : unmanaged
{
@ -267,7 +304,7 @@ namespace Ryujinx.Cpu
throw;
}
}
}
}
/// <inheritdoc/>
public ReadOnlySpan<byte> GetSpan(ulong va, int size, bool tracked = false)
@ -322,7 +359,7 @@ namespace Ryujinx.Cpu
int bit = (int)((page & 31) << 1);
int pageIndex = (int)(page >> PageToPteShift);
ref ulong pageRef = ref _pageTable[pageIndex];
ref ulong pageRef = ref _pageBitmap[pageIndex];
ulong pte = Volatile.Read(ref pageRef);
@ -373,7 +410,7 @@ namespace Ryujinx.Cpu
mask &= endMask;
}
ref ulong pageRef = ref _pageTable[pageIndex++];
ref ulong pageRef = ref _pageBitmap[pageIndex++];
ulong pte = Volatile.Read(ref pageRef);
pte |= pte >> 1;
@ -389,16 +426,53 @@ namespace Ryujinx.Cpu
}
/// <inheritdoc/>
public IEnumerable<HostMemoryRange> GetPhysicalRegions(ulong va, ulong size)
public IEnumerable<MemoryRange> GetPhysicalRegions(ulong va, ulong size)
{
if (size == 0)
int pages = GetPagesCount(va, (uint)size, out va);
var regions = new List<MemoryRange>();
ulong regionStart = GetPhysicalAddressChecked(va);
ulong regionSize = PageSize;
for (int page = 0; page < pages - 1; page++)
{
return Enumerable.Empty<HostMemoryRange>();
if (!ValidateAddress(va + PageSize))
{
return null;
}
ulong newPa = GetPhysicalAddressChecked(va + PageSize);
if (GetPhysicalAddressChecked(va) + PageSize != newPa)
{
regions.Add(new MemoryRange(regionStart, regionSize));
regionStart = newPa;
regionSize = 0;
}
va += PageSize;
regionSize += PageSize;
}
AssertMapped(va, size);
regions.Add(new MemoryRange(regionStart, regionSize));
return new HostMemoryRange[] { new HostMemoryRange(_addressSpaceMirror.GetPointer(va, size), size) };
return regions;
}
private ulong GetPhysicalAddressChecked(ulong va)
{
if (!IsMapped(va))
{
ThrowInvalidMemoryRegionException($"Not mapped: va=0x{va:X16}");
}
return GetPhysicalAddressInternal(va);
}
private ulong GetPhysicalAddressInternal(ulong va)
{
return _pageTable.Read(va) + (va & PageMask);
}
/// <inheritdoc/>
@ -427,7 +501,7 @@ namespace Ryujinx.Cpu
int bit = (int)((pageStart & 31) << 1);
int pageIndex = (int)(pageStart >> PageToPteShift);
ref ulong pageRef = ref _pageTable[pageIndex];
ref ulong pageRef = ref _pageBitmap[pageIndex];
ulong pte = Volatile.Read(ref pageRef);
ulong state = ((pte >> bit) & 3);
@ -459,7 +533,7 @@ namespace Ryujinx.Cpu
mask &= endMask;
}
ref ulong pageRef = ref _pageTable[pageIndex++];
ref ulong pageRef = ref _pageBitmap[pageIndex++];
ulong pte = Volatile.Read(ref pageRef);
ulong mappedMask = mask & BlockMappedMask;
@ -530,7 +604,7 @@ namespace Ryujinx.Cpu
ulong tag = protTag << bit;
int pageIndex = (int)(pageStart >> PageToPteShift);
ref ulong pageRef = ref _pageTable[pageIndex];
ref ulong pageRef = ref _pageBitmap[pageIndex];
ulong pte;
@ -562,7 +636,7 @@ namespace Ryujinx.Cpu
mask &= endMask;
}
ref ulong pageRef = ref _pageTable[pageIndex++];
ref ulong pageRef = ref _pageBitmap[pageIndex++];
ulong pte;
ulong mappedMask;
@ -632,7 +706,7 @@ namespace Ryujinx.Cpu
mask &= endMask;
}
ref ulong pageRef = ref _pageTable[pageIndex++];
ref ulong pageRef = ref _pageBitmap[pageIndex++];
ulong pte;
ulong mappedMask;
@ -677,7 +751,7 @@ namespace Ryujinx.Cpu
mask |= endMask;
}
ref ulong pageRef = ref _pageTable[pageIndex++];
ref ulong pageRef = ref _pageBitmap[pageIndex++];
ulong pte;
do
@ -695,11 +769,11 @@ namespace Ryujinx.Cpu
/// </summary>
protected override void Destroy()
{
_addressSpaceMirror.Dispose();
_addressSpace.Dispose();
_addressSpaceMirror.Dispose();
_memoryEh.Dispose();
}
private void ThrowInvalidMemoryRegionException(string message) => throw new InvalidMemoryRegionException(message);
private static void ThrowInvalidMemoryRegionException(string message) => throw new InvalidMemoryRegionException(message);
}
}

View File

@ -928,7 +928,7 @@ namespace Ryujinx.Graphics.Gpu.Engine.Threed
size = endAddress.Pack() - address + 1;
if (stride > 0 && indexTypeSmall)
if (stride > 0 && indexTypeSmall && _drawState.DrawIndexed && !instanced)
{
// If the index type is a small integer type, then we might be still able
// to reduce the vertex buffer size based on the maximum possible index value.

View File

@ -17,6 +17,7 @@ using Ryujinx.Common.Logging;
using Ryujinx.HLE.FileSystem;
using Ryujinx.HLE.HOS.Kernel.Process;
using Ryujinx.HLE.Loaders.Executables;
using Ryujinx.Memory;
using System;
using System.Collections.Generic;
using System.Globalization;
@ -85,8 +86,8 @@ namespace Ryujinx.HLE.HOS
MetaLoader metaData = ReadNpdm(codeFs);
_device.Configuration.VirtualFileSystem.ModLoader.CollectMods(
new[] { TitleId },
_device.Configuration.VirtualFileSystem.ModLoader.GetModsBasePath(),
new[] { TitleId },
_device.Configuration.VirtualFileSystem.ModLoader.GetModsBasePath(),
_device.Configuration.VirtualFileSystem.ModLoader.GetSdModsBasePath());
if (TitleId != 0)
@ -392,8 +393,8 @@ namespace Ryujinx.HLE.HOS
MetaLoader metaData = ReadNpdm(codeFs);
_device.Configuration.VirtualFileSystem.ModLoader.CollectMods(
_device.Configuration.ContentManager.GetAocTitleIds().Prepend(TitleId),
_device.Configuration.VirtualFileSystem.ModLoader.GetModsBasePath(),
_device.Configuration.ContentManager.GetAocTitleIds().Prepend(TitleId),
_device.Configuration.VirtualFileSystem.ModLoader.GetModsBasePath(),
_device.Configuration.VirtualFileSystem.ModLoader.GetSdModsBasePath());
if (controlNca != null)
@ -561,10 +562,21 @@ namespace Ryujinx.HLE.HOS
Graphics.Gpu.GraphicsConfig.TitleId = TitleIdText;
_device.Gpu.HostInitalized.Set();
Ptc.Initialize(TitleIdText, DisplayVersion, usePtc, _device.Configuration.MemoryManagerMode);
MemoryManagerMode memoryManagerMode = _device.Configuration.MemoryManagerMode;
if (!MemoryBlock.SupportsFlags(MemoryAllocationFlags.ViewCompatible))
{
memoryManagerMode = MemoryManagerMode.SoftwarePageTable;
}
Ptc.Initialize(TitleIdText, DisplayVersion, usePtc, memoryManagerMode);
// We allow it for nx-hbloader because it can be used to launch homebrew.
bool allowCodeMemoryForJit = TitleId == 0x010000000000100DUL;
metaData.GetNpdm(out Npdm npdm).ThrowIfFailure();
ProgramLoader.LoadNsos(_device.System.KernelContext, out ProcessTamperInfo tamperInfo, metaData, new ProgramInfo(in npdm), executables: programs);
ProgramInfo programInfo = new ProgramInfo(in npdm, allowCodeMemoryForJit);
ProgramLoader.LoadNsos(_device.System.KernelContext, out ProcessTamperInfo tamperInfo, metaData, programInfo, executables: programs);
_device.Configuration.VirtualFileSystem.ModLoader.LoadCheats(TitleId, tamperInfo, _device.TamperMachine);
}
@ -573,7 +585,7 @@ namespace Ryujinx.HLE.HOS
{
MetaLoader metaData = GetDefaultNpdm();
metaData.GetNpdm(out Npdm npdm).ThrowIfFailure();
ProgramInfo programInfo = new ProgramInfo(in npdm);
ProgramInfo programInfo = new ProgramInfo(in npdm, allowCodeMemoryForJit: true);
bool isNro = Path.GetExtension(filePath).ToLower() == ".nro";

View File

@ -21,15 +21,20 @@ namespace Ryujinx.HLE.HOS
{
MemoryManagerMode mode = context.Device.Configuration.MemoryManagerMode;
if (!MemoryBlock.SupportsFlags(MemoryAllocationFlags.ViewCompatible))
{
mode = MemoryManagerMode.SoftwarePageTable;
}
switch (mode)
{
case MemoryManagerMode.SoftwarePageTable:
return new ArmProcessContext<MemoryManager>(pid, _gpu, new MemoryManager(addressSpaceSize, invalidAccessHandler), for64Bit);
return new ArmProcessContext<MemoryManager>(pid, _gpu, new MemoryManager(context.Memory, addressSpaceSize, invalidAccessHandler), for64Bit);
case MemoryManagerMode.HostMapped:
case MemoryManagerMode.HostMappedUnsafe:
bool unsafeMode = mode == MemoryManagerMode.HostMappedUnsafe;
return new ArmProcessContext<MemoryManagerHostMapped>(pid, _gpu, new MemoryManagerHostMapped(addressSpaceSize, unsafeMode, invalidAccessHandler), for64Bit);
return new ArmProcessContext<MemoryManagerHostMapped>(pid, _gpu, new MemoryManagerHostMapped(context.Memory, addressSpaceSize, unsafeMode, invalidAccessHandler), for64Bit);
default:
throw new ArgumentOutOfRangeException();

View File

@ -59,5 +59,15 @@ namespace Ryujinx.HLE.HOS.Kernel
{
return GetCurrentThread().Owner;
}
internal static KProcess GetProcessByPid(ulong pid)
{
if (Context.Processes.TryGetValue(pid, out KProcess process))
{
return process;
}
return null;
}
}
}

View File

@ -0,0 +1,168 @@
using Ryujinx.Common;
using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.HLE.HOS.Kernel.Process;
using System;
using System.Diagnostics;
namespace Ryujinx.HLE.HOS.Kernel.Memory
{
class KCodeMemory : KAutoObject
{
public KProcess Owner { get; private set; }
private readonly KPageList _pageList;
private readonly object _lock;
private ulong _address;
private bool _isOwnerMapped;
private bool _isMapped;
public KCodeMemory(KernelContext context) : base(context)
{
_pageList = new KPageList();
_lock = new object();
}
public KernelResult Initialize(ulong address, ulong size)
{
Owner = KernelStatic.GetCurrentProcess();
KernelResult result = Owner.MemoryManager.BorrowCodeMemory(_pageList, address, size);
if (result != KernelResult.Success)
{
return result;
}
Owner.CpuMemory.Fill(address, size, 0xff);
Owner.IncrementReferenceCount();
_address = address;
_isMapped = false;
_isOwnerMapped = false;
return KernelResult.Success;
}
public KernelResult Map(ulong address, ulong size, KMemoryPermission perm)
{
if (_pageList.GetPagesCount() != BitUtils.DivRoundUp(size, KPageTableBase.PageSize))
{
return KernelResult.InvalidSize;
}
lock (_lock)
{
if (_isMapped)
{
return KernelResult.InvalidState;
}
KProcess process = KernelStatic.GetCurrentProcess();
KernelResult result = process.MemoryManager.MapPages(address, _pageList, MemoryState.CodeWritable, KMemoryPermission.ReadAndWrite);
if (result != KernelResult.Success)
{
return result;
}
_isMapped = true;
}
return KernelResult.Success;
}
public KernelResult MapToOwner(ulong address, ulong size, KMemoryPermission permission)
{
if (_pageList.GetPagesCount() != BitUtils.DivRoundUp(size, KPageTableBase.PageSize))
{
return KernelResult.InvalidSize;
}
lock (_lock)
{
if (_isOwnerMapped)
{
return KernelResult.InvalidState;
}
Debug.Assert(permission == KMemoryPermission.Read || permission == KMemoryPermission.ReadAndExecute);
KernelResult result = Owner.MemoryManager.MapPages(address, _pageList, MemoryState.CodeReadOnly, permission);
if (result != KernelResult.Success)
{
return result;
}
_isOwnerMapped = true;
}
return KernelResult.Success;
}
public KernelResult Unmap(ulong address, ulong size)
{
if (_pageList.GetPagesCount() != BitUtils.DivRoundUp(size, KPageTableBase.PageSize))
{
return KernelResult.InvalidSize;
}
lock (_lock)
{
KProcess process = KernelStatic.GetCurrentProcess();
KernelResult result = process.MemoryManager.UnmapPages(address, _pageList, MemoryState.CodeWritable);
if (result != KernelResult.Success)
{
return result;
}
Debug.Assert(_isMapped);
_isMapped = false;
}
return KernelResult.Success;
}
public KernelResult UnmapFromOwner(ulong address, ulong size)
{
if (_pageList.GetPagesCount() != BitUtils.DivRoundUp(size, KPageTableBase.PageSize))
{
return KernelResult.InvalidSize;
}
lock (_lock)
{
KernelResult result = Owner.MemoryManager.UnmapPages(address, _pageList, MemoryState.CodeReadOnly);
if (result != KernelResult.Success)
{
return result;
}
Debug.Assert(_isOwnerMapped);
_isOwnerMapped = false;
}
return KernelResult.Success;
}
protected override void Destroy()
{
if (!_isMapped && !_isOwnerMapped)
{
ulong size = _pageList.GetPagesCount() * KPageTableBase.PageSize;
if (Owner.MemoryManager.UnborrowCodeMemory(_address, size, _pageList) != KernelResult.Success)
{
throw new InvalidOperationException("Unexpected failure restoring transfer memory attributes.");
}
}
Owner.DecrementReferenceCount();
}
}
}

View File

@ -1,10 +1,7 @@
using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.Memory;
using Ryujinx.Memory.Range;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
namespace Ryujinx.HLE.HOS.Kernel.Memory
{
@ -12,17 +9,19 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
{
private readonly IVirtualMemoryManager _cpuMemory;
public override bool SupportsMemoryAliasing => true;
public KPageTable(KernelContext context, IVirtualMemoryManager cpuMemory) : base(context)
{
_cpuMemory = cpuMemory;
}
/// <inheritdoc/>
protected override IEnumerable<HostMemoryRange> GetPhysicalRegions(ulong va, ulong size)
protected override void GetPhysicalRegions(ulong va, ulong size, KPageList pageList)
{
return _cpuMemory.GetPhysicalRegions(va, size);
var ranges = _cpuMemory.GetPhysicalRegions(va, size);
foreach (var range in ranges)
{
pageList.AddRange(range.Address + DramMemoryMap.DramBase, range.Size / PageSize);
}
}
/// <inheritdoc/>
@ -34,7 +33,8 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
/// <inheritdoc/>
protected override KernelResult MapMemory(ulong src, ulong dst, ulong pagesCount, KMemoryPermission oldSrcPermission, KMemoryPermission newDstPermission)
{
var srcRanges = GetPhysicalRegions(src, pagesCount * PageSize);
KPageList pageList = new KPageList();
GetPhysicalRegions(src, pagesCount * PageSize, pageList);
KernelResult result = Reprotect(src, pagesCount, KMemoryPermission.None);
@ -43,7 +43,7 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
return result;
}
result = MapPages(dst, srcRanges, newDstPermission);
result = MapPages(dst, pageList, newDstPermission, false, 0);
if (result != KernelResult.Success)
{
@ -59,10 +59,13 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
{
ulong size = pagesCount * PageSize;
var srcRanges = GetPhysicalRegions(src, size);
var dstRanges = GetPhysicalRegions(dst, size);
KPageList srcPageList = new KPageList();
KPageList dstPageList = new KPageList();
if (!dstRanges.SequenceEqual(srcRanges))
GetPhysicalRegions(src, size, srcPageList);
GetPhysicalRegions(dst, size, dstPageList);
if (!dstPageList.IsEqual(srcPageList))
{
return KernelResult.InvalidMemRange;
}
@ -78,7 +81,7 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
if (result != KernelResult.Success)
{
KernelResult mapResult = MapPages(dst, dstRanges, oldDstPermission);
KernelResult mapResult = MapPages(dst, dstPageList, oldDstPermission, false, 0);
Debug.Assert(mapResult == KernelResult.Success);
}
@ -92,7 +95,7 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
Context.Memory.Commit(srcPa - DramMemoryMap.DramBase, size);
_cpuMemory.Map(dstVa, Context.Memory.GetPointer(srcPa - DramMemoryMap.DramBase, size), size);
_cpuMemory.Map(dstVa, srcPa - DramMemoryMap.DramBase, size);
if (DramMemoryMap.IsHeapPhysicalAddress(srcPa))
{
@ -121,7 +124,7 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
Context.Memory.Commit(addr, size);
_cpuMemory.Map(currentVa, Context.Memory.GetPointer(addr, size), size);
_cpuMemory.Map(currentVa, addr, size);
if (shouldFillPages)
{
@ -136,33 +139,6 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
return KernelResult.Success;
}
/// <inheritdoc/>
protected override KernelResult MapPages(ulong address, IEnumerable<HostMemoryRange> ranges, KMemoryPermission permission)
{
ulong currentVa = address;
foreach (var range in ranges)
{
ulong size = range.Size;
ulong pa = GetDramAddressFromHostAddress(range.Address);
if (pa != ulong.MaxValue)
{
pa += DramMemoryMap.DramBase;
if (DramMemoryMap.IsHeapPhysicalAddress(pa))
{
Context.MemoryManager.IncrementPagesReferenceCount(pa, size / PageSize);
}
}
_cpuMemory.Map(currentVa, range.Address, size);
currentVa += size;
}
return KernelResult.Success;
}
/// <inheritdoc/>
protected override KernelResult Unmap(ulong address, ulong pagesCount)
{
@ -172,13 +148,7 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
foreach (var region in regions)
{
ulong pa = GetDramAddressFromHostAddress(region.Address);
if (pa == ulong.MaxValue)
{
continue;
}
pa += DramMemoryMap.DramBase;
ulong pa = region.Address + DramMemoryMap.DramBase;
if (DramMemoryMap.IsHeapPhysicalAddress(pa))
{
pagesToClose.AddRange(pa, region.Size / PageSize);
@ -217,15 +187,5 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
{
_cpuMemory.Write(va, data);
}
private ulong GetDramAddressFromHostAddress(nuint hostAddress)
{
if (hostAddress < (nuint)(ulong)Context.Memory.Pointer || hostAddress >= (nuint)((ulong)Context.Memory.Pointer + Context.Memory.Size))
{
return ulong.MaxValue;
}
return hostAddress - (ulong)Context.Memory.Pointer;
}
}
}

View File

@ -1,11 +1,9 @@
using Ryujinx.Common;
using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.HLE.HOS.Kernel.Process;
using Ryujinx.Memory.Range;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
namespace Ryujinx.HLE.HOS.Kernel.Memory
{
@ -73,8 +71,6 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
private MersenneTwister _randomNumberGenerator;
public abstract bool SupportsMemoryAliasing { get; }
private MemoryFillValue _heapFillValue;
private MemoryFillValue _ipcFillValue;
@ -305,7 +301,7 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
TlsIoRegionStart = tlsIoRegion.Start;
TlsIoRegionEnd = tlsIoRegion.End;
// TODO: Check kernel configuration via secure monitor call when implemented to set memory fill values.
// TODO: Check kernel configuration via secure monitor call when implemented to set memory fill values.
_currentHeapAddr = HeapRegionStart;
_heapCapacity = 0;
@ -380,8 +376,9 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
}
}
public KernelResult UnmapPages(ulong address, ulong pagesCount, IEnumerable<HostMemoryRange> ranges, MemoryState stateExpected)
public KernelResult UnmapPages(ulong address, KPageList pageList, MemoryState stateExpected)
{
ulong pagesCount = pageList.GetPagesCount();
ulong size = pagesCount * PageSize;
ulong endAddr = address + size;
@ -405,9 +402,11 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
lock (_blockManager)
{
var currentRanges = GetPhysicalRegions(address, size);
KPageList currentPageList = new KPageList();
if (!currentRanges.SequenceEqual(ranges))
GetPhysicalRegions(address, size, currentPageList);
if (!currentPageList.IsEqual(pageList))
{
return KernelResult.InvalidMemRange;
}
@ -1096,6 +1095,77 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
}
}
public KernelResult UnmapProcessMemory(ulong dst, ulong size, KPageTableBase srcPageTable, ulong src)
{
lock (_blockManager)
{
lock (srcPageTable._blockManager)
{
bool success = CheckRange(
dst,
size,
MemoryState.Mask,
MemoryState.ProcessMemory,
KMemoryPermission.ReadAndWrite,
KMemoryPermission.ReadAndWrite,
MemoryAttribute.Mask,
MemoryAttribute.None,
MemoryAttribute.IpcAndDeviceMapped,
out _,
out _,
out _);
success &= srcPageTable.CheckRange(
src,
size,
MemoryState.MapProcessAllowed,
MemoryState.MapProcessAllowed,
KMemoryPermission.None,
KMemoryPermission.None,
MemoryAttribute.Mask,
MemoryAttribute.None,
MemoryAttribute.IpcAndDeviceMapped,
out _,
out _,
out _);
if (!success)
{
return KernelResult.InvalidMemState;
}
KPageList srcPageList = new KPageList();
KPageList dstPageList = new KPageList();
srcPageTable.GetPhysicalRegions(src, size, srcPageList);
GetPhysicalRegions(dst, size, dstPageList);
if (!dstPageList.IsEqual(srcPageList))
{
return KernelResult.InvalidMemRange;
}
}
if (!_slabManager.CanAllocate(MaxBlocksNeededForInsertion))
{
return KernelResult.OutOfResource;
}
ulong pagesCount = size / PageSize;
KernelResult result = Unmap(dst, pagesCount);
if (result != KernelResult.Success)
{
return result;
}
_blockManager.InsertBlock(dst, pagesCount, MemoryState.Unmapped);
return KernelResult.Success;
}
}
public KernelResult SetProcessMemoryPermission(ulong address, ulong size, KMemoryPermission permission)
{
lock (_blockManager)
@ -1690,11 +1760,6 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
bool send,
out ulong dst)
{
if (!SupportsMemoryAliasing)
{
throw new NotSupportedException("Memory aliasing not supported, can't map IPC buffers.");
}
dst = 0;
if (!_slabManager.CanAllocate(MaxBlocksNeededForInsertion))
@ -1828,7 +1893,10 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
{
ulong alignedSize = endAddrTruncated - addressRounded;
KernelResult result = MapPages(currentVa, srcPageTable.GetPhysicalRegions(addressRounded, alignedSize), permission);
KPageList pageList = new KPageList();
srcPageTable.GetPhysicalRegions(addressRounded, alignedSize, pageList);
KernelResult result = MapPages(currentVa, pageList, permission);
if (result != KernelResult.Success)
{
@ -2026,6 +2094,49 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
block.RestoreIpcMappingPermission();
}
public KernelResult GetPagesIfStateEquals(
ulong address,
ulong size,
MemoryState stateMask,
MemoryState stateExpected,
KMemoryPermission permissionMask,
KMemoryPermission permissionExpected,
MemoryAttribute attributeMask,
MemoryAttribute attributeExpected,
KPageList pageList)
{
if (!InsideAddrSpace(address, size))
{
return KernelResult.InvalidMemState;
}
lock (_blockManager)
{
if (CheckRange(
address,
size,
stateMask | MemoryState.IsPoolAllocated,
stateExpected | MemoryState.IsPoolAllocated,
permissionMask,
permissionExpected,
attributeMask,
attributeExpected,
MemoryAttribute.IpcAndDeviceMapped,
out _,
out _,
out _))
{
GetPhysicalRegions(address, size, pageList);
return KernelResult.Success;
}
else
{
return KernelResult.InvalidMemState;
}
}
}
public KernelResult BorrowIpcBuffer(ulong address, ulong size)
{
return SetAttributesAndChangePermission(
@ -2041,7 +2152,7 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
MemoryAttribute.Borrowed);
}
public KernelResult BorrowTransferMemory(List<HostMemoryRange> ranges, ulong address, ulong size, KMemoryPermission permission)
public KernelResult BorrowTransferMemory(KPageList pageList, ulong address, ulong size, KMemoryPermission permission)
{
return SetAttributesAndChangePermission(
address,
@ -2054,7 +2165,23 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
MemoryAttribute.None,
permission,
MemoryAttribute.Borrowed,
ranges);
pageList);
}
public KernelResult BorrowCodeMemory(KPageList pageList, ulong address, ulong size)
{
return SetAttributesAndChangePermission(
address,
size,
MemoryState.CodeMemoryAllowed,
MemoryState.CodeMemoryAllowed,
KMemoryPermission.Mask,
KMemoryPermission.ReadAndWrite,
MemoryAttribute.Mask,
MemoryAttribute.None,
KMemoryPermission.None,
MemoryAttribute.Borrowed,
pageList);
}
private KernelResult SetAttributesAndChangePermission(
@ -2068,7 +2195,7 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
MemoryAttribute attributeExpected,
KMemoryPermission newPermission,
MemoryAttribute attributeSetMask,
List<HostMemoryRange> ranges = null)
KPageList pageList = null)
{
if (address + size <= address || !InsideAddrSpace(address, size))
{
@ -2093,7 +2220,10 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
{
ulong pagesCount = size / PageSize;
ranges?.AddRange(GetPhysicalRegions(address, size));
if (pageList != null)
{
GetPhysicalRegions(address, pagesCount * PageSize, pageList);
}
if (!_slabManager.CanAllocate(MaxBlocksNeededForInsertion))
{
@ -2143,7 +2273,7 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
MemoryAttribute.Borrowed);
}
public KernelResult UnborrowTransferMemory(ulong address, ulong size, List<HostMemoryRange> ranges)
public KernelResult UnborrowTransferMemory(ulong address, ulong size, KPageList pageList)
{
return ClearAttributesAndChangePermission(
address,
@ -2156,7 +2286,23 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
MemoryAttribute.Borrowed,
KMemoryPermission.ReadAndWrite,
MemoryAttribute.Borrowed,
ranges);
pageList);
}
public KernelResult UnborrowCodeMemory(ulong address, ulong size, KPageList pageList)
{
return ClearAttributesAndChangePermission(
address,
size,
MemoryState.CodeMemoryAllowed,
MemoryState.CodeMemoryAllowed,
KMemoryPermission.None,
KMemoryPermission.None,
MemoryAttribute.Mask,
MemoryAttribute.Borrowed,
KMemoryPermission.ReadAndWrite,
MemoryAttribute.Borrowed,
pageList);
}
private KernelResult ClearAttributesAndChangePermission(
@ -2170,7 +2316,7 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
MemoryAttribute attributeExpected,
KMemoryPermission newPermission,
MemoryAttribute attributeClearMask,
List<HostMemoryRange> ranges = null)
KPageList pageList = null)
{
if (address + size <= address || !InsideAddrSpace(address, size))
{
@ -2195,11 +2341,13 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
{
ulong pagesCount = size / PageSize;
if (ranges != null)
if (pageList != null)
{
var currentRanges = GetPhysicalRegions(address, size);
KPageList currentPageList = new KPageList();
if (!currentRanges.SequenceEqual(ranges))
GetPhysicalRegions(address, pagesCount * PageSize, currentPageList);
if (!currentPageList.IsEqual(pageList))
{
return KernelResult.InvalidMemRange;
}
@ -2741,8 +2889,8 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
/// </summary>
/// <param name="va">Virtual address of the range</param>
/// <param name="size">Size of the range</param>
/// <returns>Array of physical regions</returns>
protected abstract IEnumerable<HostMemoryRange> GetPhysicalRegions(ulong va, ulong size);
/// <param name="pageList">Page list where the ranges will be added</param>
protected abstract void GetPhysicalRegions(ulong va, ulong size, KPageList pageList);
/// <summary>
/// Gets a read-only span of data from CPU mapped memory.
@ -2803,16 +2951,6 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
/// <returns>Result of the mapping operation</returns>
protected abstract KernelResult MapPages(ulong address, KPageList pageList, KMemoryPermission permission, bool shouldFillPages = false, byte fillValue = 0);
/// <summary>
/// Maps a region of memory into the specified host memory ranges.
/// </summary>
/// <param name="address">Destination virtual address that should be mapped</param>
/// <param name="ranges">Ranges of host memory that should be mapped</param>
/// <param name="permission">Permission of the region to be mapped</param>
/// <returns>Result of the mapping operation</returns>
/// <exception cref="NotSupportedException">The implementation does not support memory aliasing</exception>
protected abstract KernelResult MapPages(ulong address, IEnumerable<HostMemoryRange> ranges, KMemoryPermission permission);
/// <summary>
/// Unmaps a region of memory that was previously mapped with one of the page mapping methods.
/// </summary>

View File

@ -1,139 +0,0 @@
using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.Memory;
using Ryujinx.Memory.Range;
using System;
using System.Collections.Generic;
using System.Linq;
namespace Ryujinx.HLE.HOS.Kernel.Memory
{
class KPageTableHostMapped : KPageTableBase
{
private const int CopyChunckSize = 0x100000;
private readonly IVirtualMemoryManager _cpuMemory;
public override bool SupportsMemoryAliasing => false;
public KPageTableHostMapped(KernelContext context, IVirtualMemoryManager cpuMemory) : base(context)
{
_cpuMemory = cpuMemory;
}
/// <inheritdoc/>
protected override IEnumerable<HostMemoryRange> GetPhysicalRegions(ulong va, ulong size)
{
return _cpuMemory.GetPhysicalRegions(va, size);
}
/// <inheritdoc/>
protected override ReadOnlySpan<byte> GetSpan(ulong va, int size)
{
return _cpuMemory.GetSpan(va, size);
}
/// <inheritdoc/>
protected override KernelResult MapMemory(ulong src, ulong dst, ulong pagesCount, KMemoryPermission oldSrcPermission, KMemoryPermission newDstPermission)
{
ulong size = pagesCount * PageSize;
_cpuMemory.Map(dst, 0, size);
ulong currentSize = size;
while (currentSize > 0)
{
ulong copySize = Math.Min(currentSize, CopyChunckSize);
_cpuMemory.Write(dst, _cpuMemory.GetSpan(src, (int)copySize));
currentSize -= copySize;
}
return KernelResult.Success;
}
/// <inheritdoc/>
protected override KernelResult UnmapMemory(ulong dst, ulong src, ulong pagesCount, KMemoryPermission oldDstPermission, KMemoryPermission newSrcPermission)
{
ulong size = pagesCount * PageSize;
// TODO: Validation.
ulong currentSize = size;
while (currentSize > 0)
{
ulong copySize = Math.Min(currentSize, CopyChunckSize);
_cpuMemory.Write(src, _cpuMemory.GetSpan(dst, (int)copySize));
currentSize -= copySize;
}
_cpuMemory.Unmap(dst, size);
return KernelResult.Success;
}
/// <inheritdoc/>
protected override KernelResult MapPages(ulong dstVa, ulong pagesCount, ulong srcPa, KMemoryPermission permission, bool shouldFillPages, byte fillValue)
{
_cpuMemory.Map(dstVa, 0, pagesCount * PageSize);
if (shouldFillPages)
{
_cpuMemory.Fill(dstVa, pagesCount * PageSize, fillValue);
}
return KernelResult.Success;
}
/// <inheritdoc/>
protected override KernelResult MapPages(ulong address, KPageList pageList, KMemoryPermission permission, bool shouldFillPages, byte fillValue)
{
ulong pagesCount = pageList.GetPagesCount();
_cpuMemory.Map(address, 0, pagesCount * PageSize);
if (shouldFillPages)
{
_cpuMemory.Fill(address, pagesCount * PageSize, fillValue);
}
return KernelResult.Success;
}
/// <inheritdoc/>
protected override KernelResult MapPages(ulong address, IEnumerable<HostMemoryRange> ranges, KMemoryPermission permission)
{
throw new NotSupportedException();
}
/// <inheritdoc/>
protected override KernelResult Unmap(ulong address, ulong pagesCount)
{
_cpuMemory.Unmap(address, pagesCount * PageSize);
return KernelResult.Success;
}
/// <inheritdoc/>
protected override KernelResult Reprotect(ulong address, ulong pagesCount, KMemoryPermission permission)
{
// TODO.
return KernelResult.Success;
}
/// <inheritdoc/>
protected override KernelResult ReprotectWithAttributes(ulong address, ulong pagesCount, KMemoryPermission permission)
{
// TODO.
return KernelResult.Success;
}
/// <inheritdoc/>
protected override void SignalMemoryTracking(ulong va, ulong size, bool write)
{
_cpuMemory.SignalMemoryTracking(va, size, write);
}
/// <inheritdoc/>
protected override void Write(ulong va, ReadOnlySpan<byte> data)
{
_cpuMemory.Write(va, data);
}
}
}

View File

@ -6,7 +6,7 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
{
class KSharedMemory : KAutoObject
{
private readonly SharedMemoryStorage _storage;
private readonly KPageList _pageList;
private readonly ulong _ownerPid;
@ -20,7 +20,7 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
KMemoryPermission ownerPermission,
KMemoryPermission userPermission) : base(context)
{
_storage = storage;
_pageList = storage.GetPageList();
_ownerPid = ownerPid;
_ownerPermission = ownerPermission;
_userPermission = userPermission;
@ -33,10 +33,7 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
KProcess process,
KMemoryPermission permission)
{
ulong pagesCountRounded = BitUtils.DivRoundUp(size, KPageTableBase.PageSize);
var pageList = _storage.GetPageList();
if (pageList.GetPagesCount() != pagesCountRounded)
if (_pageList.GetPagesCount() != BitUtils.DivRoundUp(size, KPageTableBase.PageSize))
{
return KernelResult.InvalidSize;
}
@ -50,35 +47,17 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
return KernelResult.InvalidPermission;
}
KernelResult result = memoryManager.MapPages(address, pageList, MemoryState.SharedMemory, permission);
if (result == KernelResult.Success && !memoryManager.SupportsMemoryAliasing)
{
_storage.Borrow(process, address);
}
return result;
return memoryManager.MapPages(address, _pageList, MemoryState.SharedMemory, permission);
}
public KernelResult UnmapFromProcess(
KPageTableBase memoryManager,
ulong address,
ulong size,
KProcess process)
public KernelResult UnmapFromProcess(KPageTableBase memoryManager, ulong address, ulong size, KProcess process)
{
ulong pagesCountRounded = BitUtils.DivRoundUp(size, KPageTableBase.PageSize);
var pageList = _storage.GetPageList();
ulong pagesCount = pageList.GetPagesCount();
if (pagesCount != pagesCountRounded)
if (_pageList.GetPagesCount() != BitUtils.DivRoundUp(size, KPageTableBase.PageSize))
{
return KernelResult.InvalidSize;
}
var ranges = _storage.GetRanges();
return memoryManager.UnmapPages(address, pagesCount, ranges, MemoryState.SharedMemory);
return memoryManager.UnmapPages(address, _pageList, MemoryState.SharedMemory);
}
}
}

View File

@ -1,9 +1,7 @@
using Ryujinx.Common;
using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.HLE.HOS.Kernel.Process;
using Ryujinx.Memory.Range;
using System;
using System.Collections.Generic;
namespace Ryujinx.HLE.HOS.Kernel.Memory
{
@ -14,9 +12,7 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
// TODO: Remove when we no longer need to read it from the owner directly.
public KProcess Creator => _creator;
private readonly List<HostMemoryRange> _ranges;
private readonly SharedMemoryStorage _storage;
private readonly KPageList _pageList;
public ulong Address { get; private set; }
public ulong Size { get; private set; }
@ -28,12 +24,12 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
public KTransferMemory(KernelContext context) : base(context)
{
_ranges = new List<HostMemoryRange>();
_pageList = new KPageList();
}
public KTransferMemory(KernelContext context, SharedMemoryStorage storage) : base(context)
{
_storage = storage;
_pageList = storage.GetPageList();
Permission = KMemoryPermission.ReadAndWrite;
_hasBeenInitialized = true;
@ -46,7 +42,7 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
_creator = creator;
KernelResult result = creator.MemoryManager.BorrowTransferMemory(_ranges, address, size, permission);
KernelResult result = creator.MemoryManager.BorrowTransferMemory(_pageList, address, size, permission);
if (result != KernelResult.Success)
{
@ -71,15 +67,7 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
KProcess process,
KMemoryPermission permission)
{
if (_storage == null)
{
throw new NotImplementedException();
}
ulong pagesCountRounded = BitUtils.DivRoundUp(size, KPageTableBase.PageSize);
var pageList = _storage.GetPageList();
if (pageList.GetPagesCount() != pagesCountRounded)
if (_pageList.GetPagesCount() != BitUtils.DivRoundUp(size, KPageTableBase.PageSize))
{
return KernelResult.InvalidSize;
}
@ -91,16 +79,11 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
MemoryState state = Permission == KMemoryPermission.None ? MemoryState.TransferMemoryIsolated : MemoryState.TransferMemory;
KernelResult result = memoryManager.MapPages(address, pageList, state, KMemoryPermission.ReadAndWrite);
KernelResult result = memoryManager.MapPages(address, _pageList, state, KMemoryPermission.ReadAndWrite);
if (result == KernelResult.Success)
{
_isMapped = true;
if (!memoryManager.SupportsMemoryAliasing)
{
_storage.Borrow(process, address);
}
}
return result;
@ -112,26 +95,14 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
ulong size,
KProcess process)
{
if (_storage == null)
{
throw new NotImplementedException();
}
ulong pagesCountRounded = BitUtils.DivRoundUp(size, KPageTableBase.PageSize);
var pageList = _storage.GetPageList();
ulong pagesCount = pageList.GetPagesCount();
if (pagesCount != pagesCountRounded)
if (_pageList.GetPagesCount() != BitUtils.DivRoundUp(size, KPageTableBase.PageSize))
{
return KernelResult.InvalidSize;
}
var ranges = _storage.GetRanges();
MemoryState state = Permission == KMemoryPermission.None ? MemoryState.TransferMemoryIsolated : MemoryState.TransferMemory;
KernelResult result = memoryManager.UnmapPages(address, pagesCount, ranges, state);
KernelResult result = memoryManager.UnmapPages(address, _pageList, state);
if (result == KernelResult.Success)
{
@ -145,7 +116,7 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
{
if (_hasBeenInitialized)
{
if (!_isMapped && _creator.MemoryManager.UnborrowTransferMemory(Address, Size, _ranges) != KernelResult.Success)
if (!_isMapped && _creator.MemoryManager.UnborrowTransferMemory(Address, Size, _pageList) != KernelResult.Success)
{
throw new InvalidOperationException("Unexpected failure restoring transfer memory attributes.");
}

View File

@ -1,8 +1,4 @@
using Ryujinx.HLE.HOS.Kernel.Process;
using Ryujinx.Memory;
using Ryujinx.Memory.Range;
using System;
using System.Collections.Generic;
using System;
namespace Ryujinx.HLE.HOS.Kernel.Memory
{
@ -12,9 +8,6 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
private readonly KPageList _pageList;
private readonly ulong _size;
private IVirtualMemoryManager _borrowerMemory;
private ulong _borrowerVa;
public SharedMemoryStorage(KernelContext context, KPageList pageList)
{
_context = context;
@ -29,24 +22,6 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
}
}
public void Borrow(KProcess dstProcess, ulong va)
{
ulong currentOffset = 0;
foreach (KPageNode pageNode in _pageList)
{
ulong address = pageNode.Address - DramMemoryMap.DramBase;
ulong size = pageNode.PagesCount * KPageTableBase.PageSize;
dstProcess.CpuMemory.Write(va + currentOffset, _context.Memory.GetSpan(address + currentOffset, (int)size));
currentOffset += size;
}
_borrowerMemory = dstProcess.CpuMemory;
_borrowerVa = va;
}
public void ZeroFill()
{
for (ulong offset = 0; offset < _size; offset += sizeof(ulong))
@ -57,42 +32,13 @@ namespace Ryujinx.HLE.HOS.Kernel.Memory
public ref T GetRef<T>(ulong offset) where T : unmanaged
{
if (_borrowerMemory == null)
if (_pageList.Nodes.Count == 1)
{
if (_pageList.Nodes.Count == 1)
{
ulong address = _pageList.Nodes.First.Value.Address - DramMemoryMap.DramBase;
return ref _context.Memory.GetRef<T>(address + offset);
}
throw new NotImplementedException("Non-contiguous shared memory is not yet supported.");
ulong address = _pageList.Nodes.First.Value.Address - DramMemoryMap.DramBase;
return ref _context.Memory.GetRef<T>(address + offset);
}
else
{
return ref _borrowerMemory.GetRef<T>(_borrowerVa + offset);
}
}
public IEnumerable<HostMemoryRange> GetRanges()
{
if (_borrowerMemory == null)
{
var ranges = new List<HostMemoryRange>();
foreach (KPageNode pageNode in _pageList)
{
ulong address = pageNode.Address - DramMemoryMap.DramBase;
ulong size = pageNode.PagesCount * KPageTableBase.PageSize;
ranges.Add(new HostMemoryRange(_context.Memory.GetPointer(address, size), size));
}
return ranges;
}
else
{
return _borrowerMemory.GetPhysicalRegions(_borrowerVa, _size);
}
throw new NotImplementedException("Non-contiguous shared memory is not yet supported.");
}
public KPageList GetPageList()

View File

@ -60,6 +60,8 @@ namespace Ryujinx.HLE.HOS.Kernel.Process
public KProcessCapabilities Capabilities { get; private set; }
public bool AllowCodeMemoryForJit { get; private set; }
public ulong TitleId { get; private set; }
public bool IsApplication { get; private set; }
public ulong Pid { get; private set; }
@ -90,7 +92,7 @@ namespace Ryujinx.HLE.HOS.Kernel.Process
public HleProcessDebugger Debugger { get; private set; }
public KProcess(KernelContext context) : base(context)
public KProcess(KernelContext context, bool allowCodeMemoryForJit = false) : base(context)
{
_processLock = new object();
_threadingLock = new object();
@ -102,6 +104,8 @@ namespace Ryujinx.HLE.HOS.Kernel.Process
Capabilities = new KProcessCapabilities();
AllowCodeMemoryForJit = allowCodeMemoryForJit;
RandomEntropy = new ulong[KScheduler.CpuCoresCount];
PinnedThreads = new KThread[KScheduler.CpuCoresCount];
@ -1076,14 +1080,7 @@ namespace Ryujinx.HLE.HOS.Kernel.Process
Context = _contextFactory.Create(KernelContext, Pid, 1UL << addrSpaceBits, InvalidAccessHandler, for64Bit);
if (Context.AddressSpace is MemoryManagerHostMapped)
{
MemoryManager = new KPageTableHostMapped(KernelContext, CpuMemory);
}
else
{
MemoryManager = new KPageTable(KernelContext, CpuMemory);
}
MemoryManager = new KPageTable(KernelContext, CpuMemory);
}
private bool InvalidAccessHandler(ulong va)

View File

@ -6,7 +6,7 @@ namespace Ryujinx.HLE.HOS.Kernel.Process
{
public IProcessContext Create(KernelContext context, ulong pid, ulong addressSpaceSize, InvalidAccessHandler invalidAccessHandler, bool for64Bit)
{
return new ProcessContext(new AddressSpaceManager(addressSpaceSize));
return new ProcessContext(new AddressSpaceManager(context.Memory, addressSpaceSize));
}
}
}

View File

@ -0,0 +1,10 @@
namespace Ryujinx.HLE.HOS.Kernel.SupervisorCall
{
enum CodeMemoryOperation : uint
{
Map,
MapToOwner,
Unmap,
UnmapFromOwner
};
}

View File

@ -7,7 +7,6 @@ using Ryujinx.HLE.HOS.Kernel.Ipc;
using Ryujinx.HLE.HOS.Kernel.Memory;
using Ryujinx.HLE.HOS.Kernel.Process;
using Ryujinx.HLE.HOS.Kernel.Threading;
using Ryujinx.Memory;
using System;
using System.Threading;
@ -1317,6 +1316,248 @@ namespace Ryujinx.HLE.HOS.Kernel.SupervisorCall
return process.MemoryManager.UnmapPhysicalMemory(address, size);
}
public KernelResult CreateCodeMemory(ulong address, ulong size, out int handle)
{
handle = 0;
if (!PageAligned(address))
{
return KernelResult.InvalidAddress;
}
if (!PageAligned(size) || size == 0)
{
return KernelResult.InvalidSize;
}
if (size + address <= address)
{
return KernelResult.InvalidMemState;
}
KCodeMemory codeMemory = new KCodeMemory(_context);
using var _ = new OnScopeExit(codeMemory.DecrementReferenceCount);
KProcess currentProcess = KernelStatic.GetCurrentProcess();
if (!currentProcess.MemoryManager.InsideAddrSpace(address, size))
{
return KernelResult.InvalidMemState;
}
KernelResult result = codeMemory.Initialize(address, size);
if (result != KernelResult.Success)
{
return result;
}
return currentProcess.HandleTable.GenerateHandle(codeMemory, out handle);
}
public KernelResult ControlCodeMemory(int handle, CodeMemoryOperation op, ulong address, ulong size, KMemoryPermission permission)
{
KProcess currentProcess = KernelStatic.GetCurrentProcess();
KCodeMemory codeMemory = currentProcess.HandleTable.GetObject<KCodeMemory>(handle);
// Newer versions of the kernel also returns an error here if the owner and process
// where the operation will happen are the same. We do not return an error here
// for homebrew because some of them requires this to be patched out to work (for JIT).
if (codeMemory == null || (!currentProcess.AllowCodeMemoryForJit && codeMemory.Owner == currentProcess))
{
return KernelResult.InvalidHandle;
}
switch (op)
{
case CodeMemoryOperation.Map:
if (!currentProcess.MemoryManager.CanContain(address, size, MemoryState.CodeWritable))
{
return KernelResult.InvalidMemRange;
}
if (permission != KMemoryPermission.ReadAndWrite)
{
return KernelResult.InvalidPermission;
}
return codeMemory.Map(address, size, permission);
case CodeMemoryOperation.MapToOwner:
if (!currentProcess.MemoryManager.CanContain(address, size, MemoryState.CodeReadOnly))
{
return KernelResult.InvalidMemRange;
}
if (permission != KMemoryPermission.Read && permission != KMemoryPermission.ReadAndExecute)
{
return KernelResult.InvalidPermission;
}
return codeMemory.MapToOwner(address, size, permission);
case CodeMemoryOperation.Unmap:
if (!currentProcess.MemoryManager.CanContain(address, size, MemoryState.CodeWritable))
{
return KernelResult.InvalidMemRange;
}
if (permission != KMemoryPermission.None)
{
return KernelResult.InvalidPermission;
}
return codeMemory.Unmap(address, size);
case CodeMemoryOperation.UnmapFromOwner:
if (!currentProcess.MemoryManager.CanContain(address, size, MemoryState.CodeReadOnly))
{
return KernelResult.InvalidMemRange;
}
if (permission != KMemoryPermission.None)
{
return KernelResult.InvalidPermission;
}
return codeMemory.UnmapFromOwner(address, size);
default: return KernelResult.InvalidEnumValue;
}
}
public KernelResult SetProcessMemoryPermission(int handle, ulong src, ulong size, KMemoryPermission permission)
{
if (!PageAligned(src))
{
return KernelResult.InvalidAddress;
}
if (!PageAligned(size) || size == 0)
{
return KernelResult.InvalidSize;
}
if (permission != KMemoryPermission.None &&
permission != KMemoryPermission.Read &&
permission != KMemoryPermission.ReadAndWrite &&
permission != KMemoryPermission.ReadAndExecute)
{
return KernelResult.InvalidPermission;
}
KProcess currentProcess = KernelStatic.GetCurrentProcess();
KProcess targetProcess = currentProcess.HandleTable.GetObject<KProcess>(handle);
if (targetProcess == null)
{
return KernelResult.InvalidHandle;
}
if (targetProcess.MemoryManager.OutsideAddrSpace(src, size))
{
return KernelResult.InvalidMemState;
}
return targetProcess.MemoryManager.SetProcessMemoryPermission(src, size, permission);
}
public KernelResult MapProcessMemory(ulong dst, int handle, ulong src, ulong size)
{
if (!PageAligned(src) || !PageAligned(dst))
{
return KernelResult.InvalidAddress;
}
if (!PageAligned(size) || size == 0)
{
return KernelResult.InvalidSize;
}
if (dst + size <= dst || src + size <= src)
{
return KernelResult.InvalidMemRange;
}
KProcess dstProcess = KernelStatic.GetCurrentProcess();
KProcess srcProcess = dstProcess.HandleTable.GetObject<KProcess>(handle);
if (srcProcess == null)
{
return KernelResult.InvalidHandle;
}
if (!srcProcess.MemoryManager.InsideAddrSpace(src, size) ||
!dstProcess.MemoryManager.CanContain(dst, size, MemoryState.ProcessMemory))
{
return KernelResult.InvalidMemRange;
}
KPageList pageList = new KPageList();
KernelResult result = srcProcess.MemoryManager.GetPagesIfStateEquals(
src,
size,
MemoryState.MapProcessAllowed,
MemoryState.MapProcessAllowed,
KMemoryPermission.None,
KMemoryPermission.None,
MemoryAttribute.Mask,
MemoryAttribute.None,
pageList);
if (result != KernelResult.Success)
{
return result;
}
return dstProcess.MemoryManager.MapPages(dst, pageList, MemoryState.ProcessMemory, KMemoryPermission.ReadAndWrite);
}
public KernelResult UnmapProcessMemory(ulong dst, int handle, ulong src, ulong size)
{
if (!PageAligned(src) || !PageAligned(dst))
{
return KernelResult.InvalidAddress;
}
if (!PageAligned(size) || size == 0)
{
return KernelResult.InvalidSize;
}
if (dst + size <= dst || src + size <= src)
{
return KernelResult.InvalidMemRange;
}
KProcess dstProcess = KernelStatic.GetCurrentProcess();
KProcess srcProcess = dstProcess.HandleTable.GetObject<KProcess>(handle);
if (srcProcess == null)
{
return KernelResult.InvalidHandle;
}
if (!srcProcess.MemoryManager.InsideAddrSpace(src, size) ||
!dstProcess.MemoryManager.CanContain(dst, size, MemoryState.ProcessMemory))
{
return KernelResult.InvalidMemRange;
}
KernelResult result = dstProcess.MemoryManager.UnmapProcessMemory(dst, size, srcProcess.MemoryManager, src);
if (result != KernelResult.Success)
{
return result;
}
return KernelResult.Success;
}
public KernelResult MapProcessCodeMemory(int handle, ulong dst, ulong src, ulong size)
{
if (!PageAligned(dst) || !PageAligned(src))
@ -1391,43 +1632,6 @@ namespace Ryujinx.HLE.HOS.Kernel.SupervisorCall
return targetProcess.MemoryManager.UnmapProcessCodeMemory(dst, src, size);
}
public KernelResult SetProcessMemoryPermission(int handle, ulong src, ulong size, KMemoryPermission permission)
{
if (!PageAligned(src))
{
return KernelResult.InvalidAddress;
}
if (!PageAligned(size) || size == 0)
{
return KernelResult.InvalidSize;
}
if (permission != KMemoryPermission.None &&
permission != KMemoryPermission.Read &&
permission != KMemoryPermission.ReadAndWrite &&
permission != KMemoryPermission.ReadAndExecute)
{
return KernelResult.InvalidPermission;
}
KProcess currentProcess = KernelStatic.GetCurrentProcess();
KProcess targetProcess = currentProcess.HandleTable.GetObject<KProcess>(handle);
if (targetProcess == null)
{
return KernelResult.InvalidHandle;
}
if (targetProcess.MemoryManager.OutsideAddrSpace(src, size))
{
return KernelResult.InvalidMemState;
}
return targetProcess.MemoryManager.SetProcessMemoryPermission(src, size, permission);
}
private static bool PageAligned(ulong address)
{
return (address & (KPageTableBase.PageSize - 1)) == 0;

View File

@ -143,6 +143,26 @@ namespace Ryujinx.HLE.HOS.Kernel.SupervisorCall
return _syscall.CreateTransferMemory(out handle, address, size, permission);
}
public KernelResult CreateCodeMemory32([R(1)] uint address, [R(2)] uint size, [R(1)] out int handle)
{
return _syscall.CreateCodeMemory(address, size, out handle);
}
public KernelResult ControlCodeMemory32(
[R(0)] int handle,
[R(1)] CodeMemoryOperation op,
[R(2)] uint addressLow,
[R(3)] uint addressHigh,
[R(4)] uint sizeLow,
[R(5)] uint sizeHigh,
[R(6)] KMemoryPermission permission)
{
ulong address = addressLow | ((ulong)addressHigh << 32);
ulong size = sizeLow | ((ulong)sizeHigh << 32);
return _syscall.ControlCodeMemory(handle, op, address, size, permission);
}
public KernelResult MapTransferMemory32([R(0)] int handle, [R(1)] uint address, [R(2)] uint size, [R(3)] KMemoryPermission permission)
{
return _syscall.MapTransferMemory(handle, address, size, permission);
@ -163,6 +183,34 @@ namespace Ryujinx.HLE.HOS.Kernel.SupervisorCall
return _syscall.UnmapPhysicalMemory(address, size);
}
public KernelResult SetProcessMemoryPermission32(
[R(0)] int handle,
[R(1)] uint sizeLow,
[R(2)] uint srcLow,
[R(3)] uint srcHigh,
[R(4)] uint sizeHigh,
[R(5)] KMemoryPermission permission)
{
ulong src = srcLow | ((ulong)srcHigh << 32);
ulong size = sizeLow | ((ulong)sizeHigh << 32);
return _syscall.SetProcessMemoryPermission(handle, src, size, permission);
}
public KernelResult MapProcessMemory32([R(0)] uint dst, [R(1)] int handle, [R(2)] uint srcLow, [R(3)] uint srcHigh, [R(4)] uint size)
{
ulong src = srcLow | ((ulong)srcHigh << 32);
return _syscall.MapProcessMemory(dst, handle, src, size);
}
public KernelResult UnmapProcessMemory32([R(0)] uint dst, [R(1)] int handle, [R(2)] uint srcLow, [R(3)] uint srcHigh, [R(4)] uint size)
{
ulong src = srcLow | ((ulong)srcHigh << 32);
return _syscall.UnmapProcessMemory(dst, handle, src, size);
}
public KernelResult MapProcessCodeMemory32([R(0)] int handle, [R(1)] uint srcLow, [R(2)] uint dstLow, [R(3)] uint dstHigh, [R(4)] uint srcHigh, [R(5)] uint sizeLow, [R(6)] uint sizeHigh)
{
ulong src = srcLow | ((ulong)srcHigh << 32);
@ -181,20 +229,6 @@ namespace Ryujinx.HLE.HOS.Kernel.SupervisorCall
return _syscall.UnmapProcessCodeMemory(handle, dst, src, size);
}
public KernelResult SetProcessMemoryPermission32(
[R(0)] int handle,
[R(1)] uint sizeLow,
[R(2)] uint srcLow,
[R(3)] uint srcHigh,
[R(4)] uint sizeHigh,
[R(5)] KMemoryPermission permission)
{
ulong src = srcLow | ((ulong)srcHigh << 32);
ulong size = sizeLow | ((ulong)sizeHigh << 32);
return _syscall.SetProcessMemoryPermission(handle, src, size, permission);
}
// System
public void ExitProcess32()

View File

@ -160,6 +160,16 @@ namespace Ryujinx.HLE.HOS.Kernel.SupervisorCall
return _syscall.CreateTransferMemory(out handle, address, size, permission);
}
public KernelResult CreateCodeMemory64([R(1)] ulong address, [R(2)] ulong size, [R(1)] out int handle)
{
return _syscall.CreateCodeMemory(address, size, out handle);
}
public KernelResult ControlCodeMemory64([R(0)] int handle, [R(1)] CodeMemoryOperation op, [R(2)] ulong address, [R(3)] ulong size, [R(4)] KMemoryPermission permission)
{
return _syscall.ControlCodeMemory(handle, op, address, size, permission);
}
public KernelResult MapTransferMemory64([R(0)] int handle, [R(1)] ulong address, [R(2)] ulong size, [R(3)] KMemoryPermission permission)
{
return _syscall.MapTransferMemory(handle, address, size, permission);
@ -180,6 +190,21 @@ namespace Ryujinx.HLE.HOS.Kernel.SupervisorCall
return _syscall.UnmapPhysicalMemory(address, size);
}
public KernelResult SetProcessMemoryPermission64([R(0)] int handle, [R(1)] ulong src, [R(2)] ulong size, [R(3)] KMemoryPermission permission)
{
return _syscall.SetProcessMemoryPermission(handle, src, size, permission);
}
public KernelResult MapProcessMemory64([R(0)] ulong dst, [R(1)] int handle, [R(2)] ulong src, [R(3)] ulong size)
{
return _syscall.MapProcessMemory(dst, handle, src, size);
}
public KernelResult UnmapProcessMemory64([R(0)] ulong dst, [R(1)] int handle, [R(2)] ulong src, [R(3)] ulong size)
{
return _syscall.UnmapProcessMemory(dst, handle, src, size);
}
public KernelResult MapProcessCodeMemory64([R(0)] int handle, [R(1)] ulong dst, [R(2)] ulong src, [R(3)] ulong size)
{
return _syscall.MapProcessCodeMemory(handle, dst, src, size);
@ -190,11 +215,6 @@ namespace Ryujinx.HLE.HOS.Kernel.SupervisorCall
return _syscall.UnmapProcessCodeMemory(handle, dst, src, size);
}
public KernelResult SetProcessMemoryPermission64([R(0)] int handle, [R(1)] ulong src, [R(2)] ulong size, [R(3)] KMemoryPermission permission)
{
return _syscall.SetProcessMemoryPermission(handle, src, size, permission);
}
// System
public void ExitProcess64()

View File

@ -78,6 +78,8 @@ namespace Ryujinx.HLE.HOS.Kernel.SupervisorCall
{ 0x43, nameof(Syscall64.ReplyAndReceive64) },
{ 0x44, nameof(Syscall64.ReplyAndReceiveWithUserBuffer64) },
{ 0x45, nameof(Syscall64.CreateEvent64) },
{ 0x4b, nameof(Syscall64.CreateCodeMemory64) },
{ 0x4c, nameof(Syscall64.ControlCodeMemory64) },
{ 0x51, nameof(Syscall64.MapTransferMemory64) },
{ 0x52, nameof(Syscall64.UnmapTransferMemory64) },
{ 0x65, nameof(Syscall64.GetProcessList64) },
@ -86,6 +88,8 @@ namespace Ryujinx.HLE.HOS.Kernel.SupervisorCall
{ 0x71, nameof(Syscall64.ManageNamedPort64) },
{ 0x72, nameof(Syscall64.ConnectToPort64) },
{ 0x73, nameof(Syscall64.SetProcessMemoryPermission64) },
{ 0x74, nameof(Syscall64.MapProcessMemory64) },
{ 0x75, nameof(Syscall64.UnmapProcessMemory64) },
{ 0x77, nameof(Syscall64.MapProcessCodeMemory64) },
{ 0x78, nameof(Syscall64.UnmapProcessCodeMemory64) },
{ 0x7B, nameof(Syscall64.TerminateProcess64) },
@ -152,6 +156,8 @@ namespace Ryujinx.HLE.HOS.Kernel.SupervisorCall
{ 0x41, nameof(Syscall32.AcceptSession32) },
{ 0x43, nameof(Syscall32.ReplyAndReceive32) },
{ 0x45, nameof(Syscall32.CreateEvent32) },
{ 0x4b, nameof(Syscall32.CreateCodeMemory32) },
{ 0x4c, nameof(Syscall32.ControlCodeMemory32) },
{ 0x51, nameof(Syscall32.MapTransferMemory32) },
{ 0x52, nameof(Syscall32.UnmapTransferMemory32) },
{ 0x5F, nameof(Syscall32.FlushProcessDataCache32) },
@ -161,6 +167,8 @@ namespace Ryujinx.HLE.HOS.Kernel.SupervisorCall
{ 0x71, nameof(Syscall32.ManageNamedPort32) },
{ 0x72, nameof(Syscall32.ConnectToPort32) },
{ 0x73, nameof(Syscall32.SetProcessMemoryPermission32) },
{ 0x74, nameof(Syscall32.MapProcessMemory32) },
{ 0x75, nameof(Syscall32.UnmapProcessMemory32) },
{ 0x77, nameof(Syscall32.MapProcessCodeMemory32) },
{ 0x78, nameof(Syscall32.UnmapProcessCodeMemory32) },
{ 0x7B, nameof(Syscall32.TerminateProcess32) },

View File

@ -20,11 +20,13 @@ namespace Ryujinx.HLE.HOS
{
public string Name;
public ulong ProgramId;
public bool AllowCodeMemoryForJit;
public ProgramInfo(in Npdm npdm)
public ProgramInfo(in Npdm npdm, bool allowCodeMemoryForJit)
{
Name = StringUtils.Utf8ZToString(npdm.Meta.Value.ProgramName);
ProgramId = npdm.Aci.Value.ProgramId.Value;
AllowCodeMemoryForJit = allowCodeMemoryForJit;
}
}
@ -141,7 +143,13 @@ namespace Ryujinx.HLE.HOS
return true;
}
public static bool LoadNsos(KernelContext context, out ProcessTamperInfo tamperInfo, MetaLoader metaData, ProgramInfo programInfo, byte[] arguments = null, params IExecutable[] executables)
public static bool LoadNsos(
KernelContext context,
out ProcessTamperInfo tamperInfo,
MetaLoader metaData,
ProgramInfo programInfo,
byte[] arguments = null,
params IExecutable[] executables)
{
LibHac.Result rc = metaData.GetNpdm(out var npdm);
@ -243,7 +251,7 @@ namespace Ryujinx.HLE.HOS
return false;
}
KProcess process = new KProcess(context);
KProcess process = new KProcess(context, programInfo.AllowCodeMemoryForJit);
MemoryRegion memoryRegion = (MemoryRegion)((npdm.Acid.Value.Flags >> 2) & 0xf);

View File

@ -1,8 +1,31 @@
namespace Ryujinx.HLE.HOS.Services.Pm
using Ryujinx.HLE.HOS.Ipc;
using Ryujinx.HLE.HOS.Kernel;
using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.HLE.HOS.Kernel.Process;
namespace Ryujinx.HLE.HOS.Services.Pm
{
[Service("pm:dmnt")]
class IDebugMonitorInterface : IpcService
{
public IDebugMonitorInterface(ServiceCtx context) { }
[CommandHipc(65000)]
// AtmosphereGetProcessInfo(os::ProcessId process_id) -> sf::OutCopyHandle out_process_handle, sf::Out<ncm::ProgramLocation> out_loc, sf::Out<cfg::OverrideStatus> out_status
public ResultCode GetProcessInfo(ServiceCtx context)
{
ulong pid = context.RequestData.ReadUInt64();
KProcess process = KernelStatic.GetProcessByPid(pid);
if (context.Process.HandleTable.GenerateHandle(process, out int processHandle) != KernelResult.Success)
{
throw new System.Exception("Out of handles!");
}
context.Response.HandleDesc = IpcHandleDesc.MakeCopy(processHandle);
return ResultCode.Success;
}
}
}

View File

@ -5,6 +5,7 @@ using Ryujinx.HLE.HOS.Kernel.Common;
using Ryujinx.HLE.HOS.Kernel.Memory;
using Ryujinx.HLE.HOS.Kernel.Process;
using Ryujinx.HLE.Loaders.Executables;
using Ryujinx.Memory;
using System;
using System.Collections.Generic;
using System.IO;
@ -566,6 +567,11 @@ namespace Ryujinx.HLE.HOS.Services.Ro
_owner = context.Process.HandleTable.GetKProcess(context.Request.HandleDesc.ToCopy[0]);
context.Device.System.KernelContext.Syscall.CloseHandle(context.Request.HandleDesc.ToCopy[0]);
if (_owner?.CpuMemory is IRefCounted rc)
{
rc.IncrementReferenceCount();
}
return ResultCode.Success;
}
@ -579,6 +585,11 @@ namespace Ryujinx.HLE.HOS.Services.Ro
}
_nroInfos.Clear();
if (_owner?.CpuMemory is IRefCounted rc)
{
rc.DecrementReferenceCount();
}
}
}
}

View File

@ -1,5 +1,6 @@
using Ryujinx.Audio.Backends.CompatLayer;
using Ryujinx.Audio.Integration;
using Ryujinx.Common.Configuration;
using Ryujinx.Graphics.Gpu;
using Ryujinx.HLE.FileSystem;
using Ryujinx.HLE.HOS;
@ -48,8 +49,12 @@ namespace Ryujinx.HLE
FileSystem = Configuration.VirtualFileSystem;
UiHandler = Configuration.HostUiHandler;
MemoryAllocationFlags memoryAllocationFlags = configuration.MemoryManagerMode == MemoryManagerMode.SoftwarePageTable
? MemoryAllocationFlags.Reserve
: MemoryAllocationFlags.Reserve | MemoryAllocationFlags.Mirrorable;
AudioDeviceDriver = new CompatLayerHardwareDeviceDriver(Configuration.AudioDeviceDriver);
Memory = new MemoryBlock(Configuration.MemoryConfiguration.ToDramSize(), MemoryAllocationFlags.Reserve);
Memory = new MemoryBlock(Configuration.MemoryConfiguration.ToDramSize(), memoryAllocationFlags);
Gpu = new GpuContext(Configuration.GpuRenderer);
System = new Horizon(this);
Statistics = new PerformanceStatistics();

View File

@ -14,7 +14,7 @@ namespace Ryujinx.Memory.Tests
{
}
public void Map(ulong va, nuint hostAddress, ulong size)
public void Map(ulong va, ulong pa, ulong size)
{
throw new NotImplementedException();
}
@ -59,9 +59,9 @@ namespace Ryujinx.Memory.Tests
throw new NotImplementedException();
}
IEnumerable<HostMemoryRange> IVirtualMemoryManager.GetPhysicalRegions(ulong va, ulong size)
IEnumerable<MemoryRange> IVirtualMemoryManager.GetPhysicalRegions(ulong va, ulong size)
{
return NoMappings ? new HostMemoryRange[0] : new HostMemoryRange[] { new HostMemoryRange((nuint)va, size) };
return NoMappings ? new MemoryRange[0] : new MemoryRange[] { new MemoryRange(va, size) };
}
public bool IsMapped(ulong va)

View File

@ -1,5 +1,4 @@
using NUnit.Framework;
using Ryujinx.Memory;
using System;
using System.Runtime.InteropServices;
@ -38,5 +37,48 @@ namespace Ryujinx.Memory.Tests
Assert.AreEqual(Marshal.ReadInt32(_memoryBlock.Pointer, 0x2040), 0xbadc0de);
}
[Test, Explicit]
public void Test_Alias()
{
using MemoryBlock backing = new MemoryBlock(0x10000, MemoryAllocationFlags.Mirrorable);
using MemoryBlock toAlias = new MemoryBlock(0x10000, MemoryAllocationFlags.Reserve | MemoryAllocationFlags.ViewCompatible);
toAlias.MapView(backing, 0x1000, 0, 0x4000);
toAlias.UnmapView(backing, 0x3000, 0x1000);
toAlias.Write(0, 0xbadc0de);
Assert.AreEqual(Marshal.ReadInt32(backing.Pointer, 0x1000), 0xbadc0de);
}
[Test, Explicit]
public void Test_AliasRandom()
{
using MemoryBlock backing = new MemoryBlock(0x80000, MemoryAllocationFlags.Mirrorable);
using MemoryBlock toAlias = new MemoryBlock(0x80000, MemoryAllocationFlags.Reserve | MemoryAllocationFlags.ViewCompatible);
Random rng = new Random(123);
for (int i = 0; i < 20000; i++)
{
int srcPage = rng.Next(0, 64);
int dstPage = rng.Next(0, 64);
int pages = rng.Next(1, 65);
if ((rng.Next() & 1) != 0)
{
toAlias.MapView(backing, (ulong)srcPage << 12, (ulong)dstPage << 12, (ulong)pages << 12);
int offset = rng.Next(0, 0x1000 - sizeof(int));
toAlias.Write((ulong)((dstPage << 12) + offset), 0xbadc0de);
Assert.AreEqual(Marshal.ReadInt32(backing.Pointer, (srcPage << 12) + offset), 0xbadc0de);
}
else
{
toAlias.UnmapView(backing, (ulong)dstPage << 12, (ulong)pages << 12);
}
}
}
}
}

View File

@ -13,9 +13,9 @@ namespace Ryujinx.Memory
/// </summary>
public sealed class AddressSpaceManager : IVirtualMemoryManager, IWritableBlock
{
public const int PageBits = PageTable<nuint>.PageBits;
public const int PageSize = PageTable<nuint>.PageSize;
public const int PageMask = PageTable<nuint>.PageMask;
public const int PageBits = PageTable<ulong>.PageBits;
public const int PageSize = PageTable<ulong>.PageSize;
public const int PageMask = PageTable<ulong>.PageMask;
/// <summary>
/// Address space width in bits.
@ -24,14 +24,15 @@ namespace Ryujinx.Memory
private readonly ulong _addressSpaceSize;
private readonly PageTable<nuint> _pageTable;
private readonly MemoryBlock _backingMemory;
private readonly PageTable<ulong> _pageTable;
/// <summary>
/// Creates a new instance of the memory manager.
/// </summary>
/// <param name="backingMemory">Physical backing memory where virtual memory will be mapped to</param>
/// <param name="addressSpaceSize">Size of the address space</param>
public AddressSpaceManager(ulong addressSpaceSize)
public AddressSpaceManager(MemoryBlock backingMemory, ulong addressSpaceSize)
{
ulong asSize = PageSize;
int asBits = PageBits;
@ -44,37 +45,26 @@ namespace Ryujinx.Memory
AddressSpaceBits = asBits;
_addressSpaceSize = asSize;
_pageTable = new PageTable<nuint>();
_backingMemory = backingMemory;
_pageTable = new PageTable<ulong>();
}
/// <summary>
/// Maps a virtual memory range into a physical memory range.
/// </summary>
/// <remarks>
/// Addresses and size must be page aligned.
/// </remarks>
/// <param name="va">Virtual memory address</param>
/// <param name="hostAddress">Physical memory address</param>
/// <param name="size">Size to be mapped</param>
public void Map(ulong va, nuint hostAddress, ulong size)
/// <inheritdoc/>
public void Map(ulong va, ulong pa, ulong size)
{
AssertValidAddressAndSize(va, size);
while (size != 0)
{
_pageTable.Map(va, hostAddress);
_pageTable.Map(va, pa);
va += PageSize;
hostAddress += PageSize;
pa += PageSize;
size -= PageSize;
}
}
/// <summary>
/// Unmaps a previously mapped range of virtual memory.
/// </summary>
/// <param name="va">Virtual address of the range to be unmapped</param>
/// <param name="size">Size of the range to be unmapped</param>
/// <inheritdoc/>
public void Unmap(ulong va, ulong size)
{
AssertValidAddressAndSize(va, size);
@ -88,47 +78,25 @@ namespace Ryujinx.Memory
}
}
/// <summary>
/// Reads data from mapped memory.
/// </summary>
/// <typeparam name="T">Type of the data being read</typeparam>
/// <param name="va">Virtual address of the data in memory</param>
/// <returns>The data</returns>
/// <exception cref="InvalidMemoryRegionException">Throw for unhandled invalid or unmapped memory accesses</exception>
/// <inheritdoc/>
public T Read<T>(ulong va) where T : unmanaged
{
return MemoryMarshal.Cast<byte, T>(GetSpan(va, Unsafe.SizeOf<T>()))[0];
}
/// <summary>
/// Reads data from mapped memory.
/// </summary>
/// <param name="va">Virtual address of the data in memory</param>
/// <param name="data">Span to store the data being read into</param>
/// <exception cref="InvalidMemoryRegionException">Throw for unhandled invalid or unmapped memory accesses</exception>
/// <inheritdoc/>
public void Read(ulong va, Span<byte> data)
{
ReadImpl(va, data);
}
/// <summary>
/// Writes data to mapped memory.
/// </summary>
/// <typeparam name="T">Type of the data being written</typeparam>
/// <param name="va">Virtual address to write the data into</param>
/// <param name="value">Data to be written</param>
/// <exception cref="InvalidMemoryRegionException">Throw for unhandled invalid or unmapped memory accesses</exception>
/// <inheritdoc/>
public void Write<T>(ulong va, T value) where T : unmanaged
{
Write(va, MemoryMarshal.Cast<T, byte>(MemoryMarshal.CreateSpan(ref value, 1)));
}
/// <summary>
/// Writes data to mapped memory.
/// </summary>
/// <param name="va">Virtual address to write the data into</param>
/// <param name="data">Data to be written</param>
/// <exception cref="InvalidMemoryRegionException">Throw for unhandled invalid or unmapped memory accesses</exception>
/// <inheritdoc/>
public void Write(ulong va, ReadOnlySpan<byte> data)
{
if (data.Length == 0)
@ -140,7 +108,7 @@ namespace Ryujinx.Memory
if (IsContiguousAndMapped(va, data.Length))
{
data.CopyTo(GetHostSpanContiguous(va, data.Length));
data.CopyTo(_backingMemory.GetSpan(GetPhysicalAddressInternal(va), data.Length));
}
else
{
@ -148,34 +116,27 @@ namespace Ryujinx.Memory
if ((va & PageMask) != 0)
{
ulong pa = GetPhysicalAddressInternal(va);
size = Math.Min(data.Length, PageSize - (int)(va & PageMask));
data.Slice(0, size).CopyTo(GetHostSpanContiguous(va, size));
data.Slice(0, size).CopyTo(_backingMemory.GetSpan(pa, size));
offset += size;
}
for (; offset < data.Length; offset += size)
{
ulong pa = GetPhysicalAddressInternal(va + (ulong)offset);
size = Math.Min(data.Length - offset, PageSize);
data.Slice(offset, size).CopyTo(GetHostSpanContiguous(va + (ulong)offset, size));
data.Slice(offset, size).CopyTo(_backingMemory.GetSpan(pa, size));
}
}
}
/// <summary>
/// Gets a read-only span of data from mapped memory.
/// </summary>
/// <remarks>
/// This may perform a allocation if the data is not contiguous in memory.
/// For this reason, the span is read-only, you can't modify the data.
/// </remarks>
/// <param name="va">Virtual address of the data</param>
/// <param name="size">Size of the data</param>
/// <param name="tracked">True if read tracking is triggered on the span</param>
/// <returns>A read-only span of the data</returns>
/// <exception cref="InvalidMemoryRegionException">Throw for unhandled invalid or unmapped memory accesses</exception>
/// <inheritdoc/>
public ReadOnlySpan<byte> GetSpan(ulong va, int size, bool tracked = false)
{
if (size == 0)
@ -185,7 +146,7 @@ namespace Ryujinx.Memory
if (IsContiguousAndMapped(va, size))
{
return GetHostSpanContiguous(va, size);
return _backingMemory.GetSpan(GetPhysicalAddressInternal(va), size);
}
else
{
@ -197,19 +158,7 @@ namespace Ryujinx.Memory
}
}
/// <summary>
/// Gets a region of memory that can be written to.
/// </summary>
/// <remarks>
/// If the requested region is not contiguous in physical memory,
/// this will perform an allocation, and flush the data (writing it
/// back to the backing memory) on disposal.
/// </remarks>
/// <param name="va">Virtual address of the data</param>
/// <param name="size">Size of the data</param>
/// <param name="tracked">True if write tracking is triggered on the span</param>
/// <returns>A writable region of memory containing the data</returns>
/// <exception cref="InvalidMemoryRegionException">Throw for unhandled invalid or unmapped memory accesses</exception>
/// <inheritdoc/>
public unsafe WritableRegion GetWritableRegion(ulong va, int size, bool tracked = false)
{
if (size == 0)
@ -219,7 +168,7 @@ namespace Ryujinx.Memory
if (IsContiguousAndMapped(va, size))
{
return new WritableRegion(null, va, new NativeMemoryManager<byte>((byte*)GetHostAddress(va), size).Memory);
return new WritableRegion(null, va, _backingMemory.GetMemory(GetPhysicalAddressInternal(va), size));
}
else
{
@ -231,33 +180,18 @@ namespace Ryujinx.Memory
}
}
/// <summary>
/// Gets a reference for the given type at the specified virtual memory address.
/// </summary>
/// <remarks>
/// The data must be located at a contiguous memory region.
/// </remarks>
/// <typeparam name="T">Type of the data to get the reference</typeparam>
/// <param name="va">Virtual address of the data</param>
/// <returns>A reference to the data in memory</returns>
/// <exception cref="MemoryNotContiguousException">Throw if the specified memory region is not contiguous in physical memory</exception>
public unsafe ref T GetRef<T>(ulong va) where T : unmanaged
/// <inheritdoc/>
public ref T GetRef<T>(ulong va) where T : unmanaged
{
if (!IsContiguous(va, Unsafe.SizeOf<T>()))
{
ThrowMemoryNotContiguous();
}
return ref *(T*)GetHostAddress(va);
return ref _backingMemory.GetRef<T>(GetPhysicalAddressInternal(va));
}
/// <summary>
/// Computes the number of pages in a virtual address range.
/// </summary>
/// <param name="va">Virtual address of the range</param>
/// <param name="size">Size of the range</param>
/// <param name="startVa">The virtual address of the beginning of the first page</param>
/// <remarks>This function does not differentiate between allocated and unallocated pages.</remarks>
/// <inheritdoc/>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private int GetPagesCount(ulong va, uint size, out ulong startVa)
{
@ -268,7 +202,7 @@ namespace Ryujinx.Memory
return (int)(vaSpan / PageSize);
}
private void ThrowMemoryNotContiguous() => throw new MemoryNotContiguousException();
private static void ThrowMemoryNotContiguous() => throw new MemoryNotContiguousException();
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private bool IsContiguousAndMapped(ulong va, int size) => IsContiguous(va, size) && IsMapped(va);
@ -290,7 +224,7 @@ namespace Ryujinx.Memory
return false;
}
if (GetHostAddress(va) + PageSize != GetHostAddress(va + PageSize))
if (GetPhysicalAddressInternal(va) + PageSize != GetPhysicalAddressInternal(va + PageSize))
{
return false;
}
@ -301,18 +235,12 @@ namespace Ryujinx.Memory
return true;
}
/// <summary>
/// Gets the physical regions that make up the given virtual address region.
/// If any part of the virtual region is unmapped, null is returned.
/// </summary>
/// <param name="va">Virtual address of the range</param>
/// <param name="size">Size of the range</param>
/// <returns>Array of physical regions</returns>
public IEnumerable<HostMemoryRange> GetPhysicalRegions(ulong va, ulong size)
/// <inheritdoc/>
public IEnumerable<MemoryRange> GetPhysicalRegions(ulong va, ulong size)
{
if (size == 0)
{
return Enumerable.Empty<HostMemoryRange>();
return Enumerable.Empty<MemoryRange>();
}
if (!ValidateAddress(va) || !ValidateAddressAndSize(va, size))
@ -322,9 +250,9 @@ namespace Ryujinx.Memory
int pages = GetPagesCount(va, (uint)size, out va);
var regions = new List<HostMemoryRange>();
var regions = new List<MemoryRange>();
nuint regionStart = GetHostAddress(va);
ulong regionStart = GetPhysicalAddressInternal(va);
ulong regionSize = PageSize;
for (int page = 0; page < pages - 1; page++)
@ -334,12 +262,12 @@ namespace Ryujinx.Memory
return null;
}
nuint newHostAddress = GetHostAddress(va + PageSize);
ulong newPa = GetPhysicalAddressInternal(va + PageSize);
if (GetHostAddress(va) + PageSize != newHostAddress)
if (GetPhysicalAddressInternal(va) + PageSize != newPa)
{
regions.Add(new HostMemoryRange(regionStart, regionSize));
regionStart = newHostAddress;
regions.Add(new MemoryRange(regionStart, regionSize));
regionStart = newPa;
regionSize = 0;
}
@ -347,7 +275,7 @@ namespace Ryujinx.Memory
regionSize += PageSize;
}
regions.Add(new HostMemoryRange(regionStart, regionSize));
regions.Add(new MemoryRange(regionStart, regionSize));
return regions;
}
@ -365,26 +293,26 @@ namespace Ryujinx.Memory
if ((va & PageMask) != 0)
{
ulong pa = GetPhysicalAddressInternal(va);
size = Math.Min(data.Length, PageSize - (int)(va & PageMask));
GetHostSpanContiguous(va, size).CopyTo(data.Slice(0, size));
_backingMemory.GetSpan(pa, size).CopyTo(data.Slice(0, size));
offset += size;
}
for (; offset < data.Length; offset += size)
{
ulong pa = GetPhysicalAddressInternal(va + (ulong)offset);
size = Math.Min(data.Length - offset, PageSize);
GetHostSpanContiguous(va + (ulong)offset, size).CopyTo(data.Slice(offset, size));
_backingMemory.GetSpan(pa, size).CopyTo(data.Slice(offset, size));
}
}
/// <summary>
/// Checks if the page at a given virtual address is mapped.
/// </summary>
/// <param name="va">Virtual address to check</param>
/// <returns>True if the address is mapped, false otherwise</returns>
/// <inheritdoc/>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public bool IsMapped(ulong va)
{
@ -396,12 +324,7 @@ namespace Ryujinx.Memory
return _pageTable.Read(va) != 0;
}
/// <summary>
/// Checks if a memory range is mapped.
/// </summary>
/// <param name="va">Virtual address of the range</param>
/// <param name="size">Size of the range in bytes</param>
/// <returns>True if the entire range is mapped, false otherwise</returns>
/// <inheritdoc/>
public bool IsRangeMapped(ulong va, ulong size)
{
if (size == 0UL)
@ -460,14 +383,9 @@ namespace Ryujinx.Memory
}
}
private unsafe Span<byte> GetHostSpanContiguous(ulong va, int size)
private ulong GetPhysicalAddressInternal(ulong va)
{
return new Span<byte>((void*)GetHostAddress(va), size);
}
private nuint GetHostAddress(ulong va)
{
return _pageTable.Read(va) + (nuint)(va & PageMask);
return _pageTable.Read(va) + (va & PageMask);
}
/// <summary>

View File

@ -13,9 +13,9 @@ namespace Ryujinx.Memory
/// Addresses and size must be page aligned.
/// </remarks>
/// <param name="va">Virtual memory address</param>
/// <param name="hostAddress">Pointer where the region should be mapped to</param>
/// <param name="pa">Physical memory address where the region should be mapped to</param>
/// <param name="size">Size to be mapped</param>
void Map(ulong va, nuint hostAddress, ulong size);
void Map(ulong va, ulong pa, ulong size);
/// <summary>
/// Unmaps a previously mapped range of virtual memory.
@ -111,7 +111,7 @@ namespace Ryujinx.Memory
/// <param name="va">Virtual address of the range</param>
/// <param name="size">Size of the range</param>
/// <returns>Array of physical regions</returns>
IEnumerable<HostMemoryRange> GetPhysicalRegions(ulong va, ulong size);
IEnumerable<MemoryRange> GetPhysicalRegions(ulong va, ulong size);
/// <summary>
/// Checks if the page at a given CPU virtual address is mapped.

View File

@ -29,6 +29,18 @@ namespace Ryujinx.Memory
/// Enables mirroring of the memory block through aliasing of memory pages.
/// When enabled, this allows creating more memory blocks sharing the same backing storage.
/// </summary>
Mirrorable = 1 << 2
Mirrorable = 1 << 2,
/// <summary>
/// Indicates that the memory block should support mapping views of a mirrorable memory block.
/// The block that is to have their views mapped should be created with the <see cref="Mirrorable"/> flag.
/// </summary>
ViewCompatible = 1 << 3,
/// <summary>
/// Forces views to be mapped page by page on Windows. When partial unmaps are done, this avoids the need
/// to unmap the full range and remap sub-ranges, which creates a time window with incorrectly unmapped memory.
/// </summary>
ForceWindows4KBViewMapping = 1 << 4
}
}

View File

@ -1,4 +1,5 @@
using System;
using System.Collections.Concurrent;
using System.Runtime.CompilerServices;
using System.Threading;
@ -11,8 +12,12 @@ namespace Ryujinx.Memory
{
private readonly bool _usesSharedMemory;
private readonly bool _isMirror;
private readonly bool _viewCompatible;
private readonly bool _forceWindows4KBView;
private IntPtr _sharedMemory;
private IntPtr _pointer;
private ConcurrentDictionary<MemoryBlock, byte> _viewStorages;
private int _viewCount;
/// <summary>
/// Pointer to the memory block data.
@ -36,12 +41,14 @@ namespace Ryujinx.Memory
if (flags.HasFlag(MemoryAllocationFlags.Mirrorable))
{
_sharedMemory = MemoryManagement.CreateSharedMemory(size, flags.HasFlag(MemoryAllocationFlags.Reserve));
_pointer = MemoryManagement.MapSharedMemory(_sharedMemory);
_pointer = MemoryManagement.MapSharedMemory(_sharedMemory, size);
_usesSharedMemory = true;
}
else if (flags.HasFlag(MemoryAllocationFlags.Reserve))
{
_pointer = MemoryManagement.Reserve(size);
_viewCompatible = flags.HasFlag(MemoryAllocationFlags.ViewCompatible);
_forceWindows4KBView = flags.HasFlag(MemoryAllocationFlags.ForceWindows4KBViewMapping);
_pointer = MemoryManagement.Reserve(size, _viewCompatible);
}
else
{
@ -49,6 +56,10 @@ namespace Ryujinx.Memory
}
Size = size;
_viewStorages = new ConcurrentDictionary<MemoryBlock, byte>();
_viewStorages.TryAdd(this, 0);
_viewCount = 1;
}
/// <summary>
@ -60,7 +71,7 @@ namespace Ryujinx.Memory
/// <exception cref="PlatformNotSupportedException">Throw when the current platform is not supported</exception>
private MemoryBlock(ulong size, IntPtr sharedMemory)
{
_pointer = MemoryManagement.MapSharedMemory(sharedMemory);
_pointer = MemoryManagement.MapSharedMemory(sharedMemory, size);
Size = size;
_usesSharedMemory = true;
_isMirror = true;
@ -112,6 +123,42 @@ namespace Ryujinx.Memory
return MemoryManagement.Decommit(GetPointerInternal(offset, size), size);
}
/// <summary>
/// Maps a view of memory from another memory block.
/// </summary>
/// <param name="srcBlock">Memory block from where the backing memory will be taken</param>
/// <param name="srcOffset">Offset on <paramref name="srcBlock"/> of the region that should be mapped</param>
/// <param name="dstOffset">Offset to map the view into on this block</param>
/// <param name="size">Size of the range to be mapped</param>
/// <exception cref="NotSupportedException">Throw when the source memory block does not support mirroring</exception>
/// <exception cref="ObjectDisposedException">Throw when the memory block has already been disposed</exception>
/// <exception cref="InvalidMemoryRegionException">Throw when either <paramref name="offset"/> or <paramref name="size"/> are out of range</exception>
public void MapView(MemoryBlock srcBlock, ulong srcOffset, ulong dstOffset, ulong size)
{
if (srcBlock._sharedMemory == IntPtr.Zero)
{
throw new ArgumentException("The source memory block is not mirrorable, and thus cannot be mapped on the current block.");
}
if (_viewStorages.TryAdd(srcBlock, 0))
{
srcBlock.IncrementViewCount();
}
MemoryManagement.MapView(srcBlock._sharedMemory, srcOffset, GetPointerInternal(dstOffset, size), size, _forceWindows4KBView);
}
/// <summary>
/// Unmaps a view of memory from another memory block.
/// </summary>
/// <param name="srcBlock">Memory block from where the backing memory was taken during map</param>
/// <param name="offset">Offset of the view previously mapped with <see cref="MapView"/></param>
/// <param name="size">Size of the range to be unmapped</param>
public void UnmapView(MemoryBlock srcBlock, ulong offset, ulong size)
{
MemoryManagement.UnmapView(srcBlock._sharedMemory, GetPointerInternal(offset, size), size, _forceWindows4KBView);
}
/// <summary>
/// Reprotects a region of memory.
/// </summary>
@ -124,21 +171,7 @@ namespace Ryujinx.Memory
/// <exception cref="MemoryProtectionException">Throw when <paramref name="permission"/> is invalid</exception>
public void Reprotect(ulong offset, ulong size, MemoryPermission permission, bool throwOnFail = true)
{
MemoryManagement.Reprotect(GetPointerInternal(offset, size), size, permission, throwOnFail);
}
/// <summary>
/// Remaps a region of memory into this memory block.
/// </summary>
/// <param name="offset">Starting offset of the range to be remapped into</param>
/// <param name="sourceAddress">Starting offset of the range to be remapped from</param>
/// <param name="size">Size of the range to be remapped</param>
/// <exception cref="ObjectDisposedException">Throw when the memory block has already been disposed</exception>
/// <exception cref="InvalidMemoryRegionException">Throw when either <paramref name="offset"/> or <paramref name="size"/> are out of range</exception>
/// <exception cref="MemoryProtectionException">Throw when <paramref name="permission"/> is invalid</exception>
public void Remap(ulong offset, IntPtr sourceAddress, ulong size)
{
MemoryManagement.Remap(GetPointerInternal(offset, size), sourceAddress, size);
MemoryManagement.Reprotect(GetPointerInternal(offset, size), size, permission, _viewCompatible, _forceWindows4KBView, throwOnFail);
}
/// <summary>
@ -274,7 +307,7 @@ namespace Ryujinx.Memory
/// <exception cref="ObjectDisposedException">Throw when the memory block has already been disposed</exception>
/// <exception cref="InvalidMemoryRegionException">Throw when either <paramref name="offset"/> or <paramref name="size"/> are out of range</exception>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public nuint GetPointer(ulong offset, ulong size) => (nuint)(ulong)GetPointerInternal(offset, size);
public IntPtr GetPointer(ulong offset, ulong size) => GetPointerInternal(offset, size);
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private IntPtr GetPointerInternal(ulong offset, ulong size)
@ -367,22 +400,63 @@ namespace Ryujinx.Memory
{
if (_usesSharedMemory)
{
MemoryManagement.UnmapSharedMemory(ptr);
if (_sharedMemory != IntPtr.Zero && !_isMirror)
{
MemoryManagement.DestroySharedMemory(_sharedMemory);
_sharedMemory = IntPtr.Zero;
}
MemoryManagement.UnmapSharedMemory(ptr, Size);
}
else
{
MemoryManagement.Free(ptr);
}
foreach (MemoryBlock viewStorage in _viewStorages.Keys)
{
viewStorage.DecrementViewCount();
}
_viewStorages.Clear();
}
}
private void ThrowObjectDisposed() => throw new ObjectDisposedException(nameof(MemoryBlock));
private void ThrowInvalidMemoryRegionException() => throw new InvalidMemoryRegionException();
/// <summary>
/// Increments the number of views that uses this memory block as storage.
/// </summary>
private void IncrementViewCount()
{
Interlocked.Increment(ref _viewCount);
}
/// <summary>
/// Decrements the number of views that uses this memory block as storage.
/// </summary>
private void DecrementViewCount()
{
if (Interlocked.Decrement(ref _viewCount) == 0 && _sharedMemory != IntPtr.Zero && !_isMirror)
{
MemoryManagement.DestroySharedMemory(_sharedMemory);
_sharedMemory = IntPtr.Zero;
}
}
/// <summary>
/// Checks if the specified memory allocation flags are supported on the current platform.
/// </summary>
/// <param name="flags">Flags to be checked</param>
/// <returns>True if the platform supports all the flags, false otherwise</returns>
public static bool SupportsFlags(MemoryAllocationFlags flags)
{
if (flags.HasFlag(MemoryAllocationFlags.ViewCompatible))
{
if (OperatingSystem.IsWindows())
{
return OperatingSystem.IsWindowsVersionAtLeast(10, 0, 17134);
}
return OperatingSystem.IsLinux() || OperatingSystem.IsMacOS();
}
return true;
}
private static void ThrowObjectDisposed() => throw new ObjectDisposedException(nameof(MemoryBlock));
private static void ThrowInvalidMemoryRegionException() => throw new InvalidMemoryRegionException();
}
}

View File

@ -12,8 +12,7 @@ namespace Ryujinx.Memory
return MemoryManagementWindows.Allocate(sizeNint);
}
else if (OperatingSystem.IsLinux() ||
OperatingSystem.IsMacOS())
else if (OperatingSystem.IsLinux() || OperatingSystem.IsMacOS())
{
return MemoryManagementUnix.Allocate(size);
}
@ -23,16 +22,15 @@ namespace Ryujinx.Memory
}
}
public static IntPtr Reserve(ulong size)
public static IntPtr Reserve(ulong size, bool viewCompatible)
{
if (OperatingSystem.IsWindows())
{
IntPtr sizeNint = new IntPtr((long)size);
return MemoryManagementWindows.Reserve(sizeNint);
return MemoryManagementWindows.Reserve(sizeNint, viewCompatible);
}
else if (OperatingSystem.IsLinux() ||
OperatingSystem.IsMacOS())
else if (OperatingSystem.IsLinux() || OperatingSystem.IsMacOS())
{
return MemoryManagementUnix.Reserve(size);
}
@ -50,8 +48,7 @@ namespace Ryujinx.Memory
return MemoryManagementWindows.Commit(address, sizeNint);
}
else if (OperatingSystem.IsLinux() ||
OperatingSystem.IsMacOS())
else if (OperatingSystem.IsLinux() || OperatingSystem.IsMacOS())
{
return MemoryManagementUnix.Commit(address, size);
}
@ -69,8 +66,7 @@ namespace Ryujinx.Memory
return MemoryManagementWindows.Decommit(address, sizeNint);
}
else if (OperatingSystem.IsLinux() ||
OperatingSystem.IsMacOS())
else if (OperatingSystem.IsLinux() || OperatingSystem.IsMacOS())
{
return MemoryManagementUnix.Decommit(address, size);
}
@ -80,7 +76,57 @@ namespace Ryujinx.Memory
}
}
public static void Reprotect(IntPtr address, ulong size, MemoryPermission permission, bool throwOnFail)
public static void MapView(IntPtr sharedMemory, ulong srcOffset, IntPtr address, ulong size, bool force4KBMap)
{
if (OperatingSystem.IsWindows())
{
IntPtr sizeNint = new IntPtr((long)size);
if (force4KBMap)
{
MemoryManagementWindows.MapView4KB(sharedMemory, srcOffset, address, sizeNint);
}
else
{
MemoryManagementWindows.MapView(sharedMemory, srcOffset, address, sizeNint);
}
}
else if (OperatingSystem.IsLinux() || OperatingSystem.IsMacOS())
{
MemoryManagementUnix.MapView(sharedMemory, srcOffset, address, size);
}
else
{
throw new PlatformNotSupportedException();
}
}
public static void UnmapView(IntPtr sharedMemory, IntPtr address, ulong size, bool force4KBMap)
{
if (OperatingSystem.IsWindows())
{
IntPtr sizeNint = new IntPtr((long)size);
if (force4KBMap)
{
MemoryManagementWindows.UnmapView4KB(address, sizeNint);
}
else
{
MemoryManagementWindows.UnmapView(sharedMemory, address, sizeNint);
}
}
else if (OperatingSystem.IsLinux() || OperatingSystem.IsMacOS())
{
MemoryManagementUnix.UnmapView(address, size);
}
else
{
throw new PlatformNotSupportedException();
}
}
public static void Reprotect(IntPtr address, ulong size, MemoryPermission permission, bool forView, bool force4KBMap, bool throwOnFail)
{
bool result;
@ -88,10 +134,16 @@ namespace Ryujinx.Memory
{
IntPtr sizeNint = new IntPtr((long)size);
result = MemoryManagementWindows.Reprotect(address, sizeNint, permission);
if (forView && force4KBMap)
{
result = MemoryManagementWindows.Reprotect4KB(address, sizeNint, permission, forView);
}
else
{
result = MemoryManagementWindows.Reprotect(address, sizeNint, permission, forView);
}
}
else if (OperatingSystem.IsLinux() ||
OperatingSystem.IsMacOS())
else if (OperatingSystem.IsLinux() || OperatingSystem.IsMacOS())
{
result = MemoryManagementUnix.Reprotect(address, size, permission);
}
@ -112,8 +164,7 @@ namespace Ryujinx.Memory
{
return MemoryManagementWindows.Free(address);
}
else if (OperatingSystem.IsLinux() ||
OperatingSystem.IsMacOS())
else if (OperatingSystem.IsLinux() || OperatingSystem.IsMacOS())
{
return MemoryManagementUnix.Free(address);
}
@ -131,8 +182,7 @@ namespace Ryujinx.Memory
return MemoryManagementWindows.CreateSharedMemory(sizeNint, reserve);
}
else if (OperatingSystem.IsLinux() ||
OperatingSystem.IsMacOS())
else if (OperatingSystem.IsLinux() || OperatingSystem.IsMacOS())
{
return MemoryManagementUnix.CreateSharedMemory(size, reserve);
}
@ -148,8 +198,7 @@ namespace Ryujinx.Memory
{
MemoryManagementWindows.DestroySharedMemory(handle);
}
else if (OperatingSystem.IsLinux() ||
OperatingSystem.IsMacOS())
else if (OperatingSystem.IsLinux() || OperatingSystem.IsMacOS())
{
MemoryManagementUnix.DestroySharedMemory(handle);
}
@ -159,16 +208,15 @@ namespace Ryujinx.Memory
}
}
public static IntPtr MapSharedMemory(IntPtr handle)
public static IntPtr MapSharedMemory(IntPtr handle, ulong size)
{
if (OperatingSystem.IsWindows())
{
return MemoryManagementWindows.MapSharedMemory(handle);
}
else if (OperatingSystem.IsLinux() ||
OperatingSystem.IsMacOS())
else if (OperatingSystem.IsLinux() || OperatingSystem.IsMacOS())
{
return MemoryManagementUnix.MapSharedMemory(handle);
return MemoryManagementUnix.MapSharedMemory(handle, size);
}
else
{
@ -176,29 +224,15 @@ namespace Ryujinx.Memory
}
}
public static void UnmapSharedMemory(IntPtr address)
public static void UnmapSharedMemory(IntPtr address, ulong size)
{
if (OperatingSystem.IsWindows())
{
MemoryManagementWindows.UnmapSharedMemory(address);
}
else if (OperatingSystem.IsLinux() ||
OperatingSystem.IsMacOS())
else if (OperatingSystem.IsLinux() || OperatingSystem.IsMacOS())
{
MemoryManagementUnix.UnmapSharedMemory(address);
}
else
{
throw new PlatformNotSupportedException();
}
}
public static IntPtr Remap(IntPtr target, IntPtr source, ulong size)
{
if (OperatingSystem.IsLinux() ||
OperatingSystem.IsMacOS())
{
return MemoryManagementUnix.Remap(target, source, size);
MemoryManagementUnix.UnmapSharedMemory(address, size);
}
else
{

View File

@ -1,8 +1,7 @@
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Runtime.InteropServices;
using System.Runtime.Versioning;
using System.Text;
using static Ryujinx.Memory.MemoryManagerUnixHelper;
@ -12,15 +11,6 @@ namespace Ryujinx.Memory
[SupportedOSPlatform("macos")]
static class MemoryManagementUnix
{
private struct UnixSharedMemory
{
public IntPtr Pointer;
public ulong Size;
public IntPtr SourcePointer;
}
private static readonly List<UnixSharedMemory> _sharedMemory = new List<UnixSharedMemory>();
private static readonly ConcurrentDictionary<IntPtr, ulong> _sharedMemorySource = new ConcurrentDictionary<IntPtr, ulong>();
private static readonly ConcurrentDictionary<IntPtr, ulong> _allocations = new ConcurrentDictionary<IntPtr, ulong>();
public static IntPtr Allocate(ulong size)
@ -69,40 +59,15 @@ namespace Ryujinx.Memory
public static bool Commit(IntPtr address, ulong size)
{
bool success = mprotect(address, size, MmapProts.PROT_READ | MmapProts.PROT_WRITE) == 0;
if (success)
{
foreach (var shared in _sharedMemory)
{
if ((ulong)address + size > (ulong)shared.SourcePointer && (ulong)address < (ulong)shared.SourcePointer + shared.Size)
{
ulong sharedAddress = ((ulong)address - (ulong)shared.SourcePointer) + (ulong)shared.Pointer;
if (mprotect((IntPtr)sharedAddress, size, MmapProts.PROT_READ | MmapProts.PROT_WRITE) != 0)
{
return false;
}
}
}
}
return success;
return mprotect(address, size, MmapProts.PROT_READ | MmapProts.PROT_WRITE) == 0;
}
public static bool Decommit(IntPtr address, ulong size)
{
bool isShared;
lock (_sharedMemory)
{
isShared = _sharedMemory.Exists(x => (ulong)address >= (ulong)x.Pointer && (ulong)address + size <= (ulong)x.Pointer + x.Size);
}
// Must be writable for madvise to work properly.
mprotect(address, size, MmapProts.PROT_READ | MmapProts.PROT_WRITE);
madvise(address, size, isShared ? MADV_REMOVE : MADV_DONTNEED);
madvise(address, size, MADV_REMOVE);
return mprotect(address, size, MmapProts.PROT_NONE) == 0;
}
@ -136,139 +101,83 @@ namespace Ryujinx.Memory
return false;
}
public static IntPtr Remap(IntPtr target, IntPtr source, ulong size)
public static bool Unmap(IntPtr address, ulong size)
{
int flags = 1;
if (target != IntPtr.Zero)
{
flags |= 2;
}
IntPtr result = mremap(source, 0, size, flags, target);
if (result == IntPtr.Zero)
{
throw new InvalidOperationException();
}
return result;
return munmap(address, size) == 0;
}
public static IntPtr CreateSharedMemory(ulong size, bool reserve)
public unsafe static IntPtr CreateSharedMemory(ulong size, bool reserve)
{
IntPtr result = AllocateInternal(
size,
reserve ? MmapProts.PROT_NONE : MmapProts.PROT_READ | MmapProts.PROT_WRITE,
true);
int fd;
if (result == IntPtr.Zero)
if (OperatingSystem.IsMacOS())
{
byte[] memName = Encoding.ASCII.GetBytes("Ryujinx-XXXXXX");
fixed (byte* pMemName = memName)
{
fd = shm_open((IntPtr)pMemName, 0x2 | 0x200 | 0x800 | 0x400, 384); // O_RDWR | O_CREAT | O_EXCL | O_TRUNC, 0600
if (fd == -1)
{
throw new OutOfMemoryException();
}
if (shm_unlink((IntPtr)pMemName) != 0)
{
throw new OutOfMemoryException();
}
}
}
else
{
byte[] fileName = Encoding.ASCII.GetBytes("/dev/shm/Ryujinx-XXXXXX");
fixed (byte* pFileName = fileName)
{
fd = mkstemp((IntPtr)pFileName);
if (fd == -1)
{
throw new OutOfMemoryException();
}
if (unlink((IntPtr)pFileName) != 0)
{
throw new OutOfMemoryException();
}
}
}
if (ftruncate(fd, (IntPtr)size) != 0)
{
throw new OutOfMemoryException();
}
_sharedMemorySource[result] = (ulong)size;
return result;
return (IntPtr)fd;
}
public static void DestroySharedMemory(IntPtr handle)
{
lock (_sharedMemory)
{
foreach (var memory in _sharedMemory)
{
if (memory.SourcePointer == handle)
{
throw new InvalidOperationException("Shared memory cannot be destroyed unless fully unmapped.");
}
}
}
_sharedMemorySource.Remove(handle, out ulong _);
close((int)handle);
}
public static IntPtr MapSharedMemory(IntPtr handle)
public static IntPtr MapSharedMemory(IntPtr handle, ulong size)
{
// Try find the handle for this shared memory. If it is mapped, then we want to map
// it a second time in another location.
// If it is not mapped, then its handle is the mapping.
ulong size = _sharedMemorySource[handle];
if (size == 0)
{
throw new InvalidOperationException("Shared memory cannot be mapped after its source is unmapped.");
}
lock (_sharedMemory)
{
foreach (var memory in _sharedMemory)
{
if (memory.Pointer == handle)
{
IntPtr result = AllocateInternal(
memory.Size,
MmapProts.PROT_NONE
);
if (result == IntPtr.Zero)
{
throw new OutOfMemoryException();
}
Remap(result, handle, memory.Size);
_sharedMemory.Add(new UnixSharedMemory
{
Pointer = result,
Size = memory.Size,
SourcePointer = handle
});
return result;
}
}
_sharedMemory.Add(new UnixSharedMemory
{
Pointer = handle,
Size = size,
SourcePointer = handle
});
}
return handle;
return mmap(IntPtr.Zero, size, MmapProts.PROT_READ | MmapProts.PROT_WRITE, MmapFlags.MAP_SHARED, (int)handle, 0);
}
public static void UnmapSharedMemory(IntPtr address)
public static void UnmapSharedMemory(IntPtr address, ulong size)
{
lock (_sharedMemory)
{
int removed = _sharedMemory.RemoveAll(memory =>
{
if (memory.Pointer == address)
{
if (memory.Pointer == memory.SourcePointer)
{
// After removing the original mapping, it cannot be mapped again.
_sharedMemorySource[memory.SourcePointer] = 0;
}
munmap(address, size);
}
Free(address);
return true;
}
public static void MapView(IntPtr sharedMemory, ulong srcOffset, IntPtr location, ulong size)
{
mmap(location, size, MmapProts.PROT_READ | MmapProts.PROT_WRITE, MmapFlags.MAP_FIXED | MmapFlags.MAP_SHARED, (int)sharedMemory, (long)srcOffset);
}
return false;
});
if (removed == 0)
{
throw new InvalidOperationException("Shared memory mapping could not be found.");
}
}
public static void UnmapView(IntPtr location, ulong size)
{
mmap(location, size, MmapProts.PROT_NONE, MmapFlags.MAP_FIXED, -1, 0);
}
}
}

View File

@ -1,7 +1,5 @@
using Ryujinx.Memory.WindowsShared;
using System;
using System.Collections.Generic;
using System.Runtime.InteropServices;
using System.Runtime.Versioning;
namespace Ryujinx.Memory
@ -9,74 +7,42 @@ namespace Ryujinx.Memory
[SupportedOSPlatform("windows")]
static class MemoryManagementWindows
{
private static readonly IntPtr InvalidHandleValue = new IntPtr(-1);
private static bool UseWin10Placeholders;
private const int PageSize = 0x1000;
private static object _emulatedHandleLock = new object();
private static EmulatedSharedMemoryWindows[] _emulatedShared = new EmulatedSharedMemoryWindows[64];
private static List<EmulatedSharedMemoryWindows> _emulatedSharedList = new List<EmulatedSharedMemoryWindows>();
[DllImport("kernel32.dll", SetLastError = true)]
private static extern IntPtr VirtualAlloc(
IntPtr lpAddress,
IntPtr dwSize,
AllocationType flAllocationType,
MemoryProtection flProtect);
[DllImport("kernel32.dll", SetLastError = true)]
private static extern bool VirtualProtect(
IntPtr lpAddress,
IntPtr dwSize,
MemoryProtection flNewProtect,
out MemoryProtection lpflOldProtect);
[DllImport("kernel32.dll", SetLastError = true)]
private static extern bool VirtualFree(IntPtr lpAddress, IntPtr dwSize, AllocationType dwFreeType);
[DllImport("kernel32.dll", SetLastError = true)]
private static extern IntPtr CreateFileMapping(
IntPtr hFile,
IntPtr lpFileMappingAttributes,
FileMapProtection flProtect,
uint dwMaximumSizeHigh,
uint dwMaximumSizeLow,
[MarshalAs(UnmanagedType.LPWStr)] string lpName);
[DllImport("kernel32.dll", SetLastError = true)]
private static extern bool CloseHandle(IntPtr hObject);
[DllImport("kernel32.dll", SetLastError = true)]
private static extern IntPtr MapViewOfFile(
IntPtr hFileMappingObject,
uint dwDesiredAccess,
uint dwFileOffsetHigh,
uint dwFileOffsetLow,
IntPtr dwNumberOfBytesToMap);
[DllImport("kernel32.dll", SetLastError = true)]
private static extern bool UnmapViewOfFile(IntPtr lpBaseAddress);
[DllImport("kernel32.dll", SetLastError = true)]
private static extern uint GetLastError();
static MemoryManagementWindows()
{
UseWin10Placeholders = OperatingSystem.IsWindowsVersionAtLeast(10, 0, 17134);
}
private static readonly PlaceholderManager _placeholders = new PlaceholderManager();
public static IntPtr Allocate(IntPtr size)
{
return AllocateInternal(size, AllocationType.Reserve | AllocationType.Commit);
}
public static IntPtr Reserve(IntPtr size)
public static IntPtr Reserve(IntPtr size, bool viewCompatible)
{
if (viewCompatible)
{
IntPtr baseAddress = AllocateInternal2(size, AllocationType.Reserve | AllocationType.ReservePlaceholder);
_placeholders.ReserveRange((ulong)baseAddress, (ulong)size);
return baseAddress;
}
return AllocateInternal(size, AllocationType.Reserve);
}
private static IntPtr AllocateInternal(IntPtr size, AllocationType flags = 0)
{
IntPtr ptr = VirtualAlloc(IntPtr.Zero, size, flags, MemoryProtection.ReadWrite);
IntPtr ptr = WindowsApi.VirtualAlloc(IntPtr.Zero, size, flags, MemoryProtection.ReadWrite);
if (ptr == IntPtr.Zero)
{
throw new OutOfMemoryException();
}
return ptr;
}
private static IntPtr AllocateInternal2(IntPtr size, AllocationType flags = 0)
{
IntPtr ptr = WindowsApi.VirtualAlloc2(WindowsApi.CurrentProcessHandle, IntPtr.Zero, size, flags, MemoryProtection.NoAccess, IntPtr.Zero, 0);
if (ptr == IntPtr.Zero)
{
@ -88,164 +54,131 @@ namespace Ryujinx.Memory
public static bool Commit(IntPtr location, IntPtr size)
{
if (UseWin10Placeholders)
{
lock (_emulatedSharedList)
{
foreach (var shared in _emulatedSharedList)
{
if (shared.CommitMap(location, size))
{
return true;
}
}
}
}
return VirtualAlloc(location, size, AllocationType.Commit, MemoryProtection.ReadWrite) != IntPtr.Zero;
return WindowsApi.VirtualAlloc(location, size, AllocationType.Commit, MemoryProtection.ReadWrite) != IntPtr.Zero;
}
public static bool Decommit(IntPtr location, IntPtr size)
{
if (UseWin10Placeholders)
{
lock (_emulatedSharedList)
{
foreach (var shared in _emulatedSharedList)
{
if (shared.DecommitMap(location, size))
{
return true;
}
}
}
}
return VirtualFree(location, size, AllocationType.Decommit);
return WindowsApi.VirtualFree(location, size, AllocationType.Decommit);
}
public static bool Reprotect(IntPtr address, IntPtr size, MemoryPermission permission)
public static void MapView(IntPtr sharedMemory, ulong srcOffset, IntPtr location, IntPtr size)
{
if (UseWin10Placeholders)
_placeholders.MapView(sharedMemory, srcOffset, location, size);
}
public static void MapView4KB(IntPtr sharedMemory, ulong srcOffset, IntPtr location, IntPtr size)
{
ulong uaddress = (ulong)location;
ulong usize = (ulong)size;
IntPtr endLocation = (IntPtr)(uaddress + usize);
while (location != endLocation)
{
ulong uaddress = (ulong)address;
ulong usize = (ulong)size;
while (usize > 0)
WindowsApi.VirtualFree(location, (IntPtr)PageSize, AllocationType.Release | AllocationType.PreservePlaceholder);
var ptr = WindowsApi.MapViewOfFile3(
sharedMemory,
WindowsApi.CurrentProcessHandle,
location,
srcOffset,
(IntPtr)PageSize,
0x4000,
MemoryProtection.ReadWrite,
IntPtr.Zero,
0);
if (ptr == IntPtr.Zero)
{
ulong nextGranular = (uaddress & ~EmulatedSharedMemoryWindows.MappingMask) + EmulatedSharedMemoryWindows.MappingGranularity;
ulong mapSize = Math.Min(usize, nextGranular - uaddress);
if (!VirtualProtect((IntPtr)uaddress, (IntPtr)mapSize, GetProtection(permission), out _))
{
return false;
}
uaddress = nextGranular;
usize -= mapSize;
throw new WindowsApiException("MapViewOfFile3");
}
return true;
location += PageSize;
srcOffset += PageSize;
}
}
public static void UnmapView(IntPtr sharedMemory, IntPtr location, IntPtr size)
{
_placeholders.UnmapView(sharedMemory, location, size);
}
public static void UnmapView4KB(IntPtr location, IntPtr size)
{
ulong uaddress = (ulong)location;
ulong usize = (ulong)size;
IntPtr endLocation = (IntPtr)(uaddress + usize);
while (location != endLocation)
{
bool result = WindowsApi.UnmapViewOfFile2(WindowsApi.CurrentProcessHandle, location, 2);
if (!result)
{
throw new WindowsApiException("UnmapViewOfFile2");
}
location += PageSize;
}
}
public static bool Reprotect(IntPtr address, IntPtr size, MemoryPermission permission, bool forView)
{
if (forView)
{
return _placeholders.ReprotectView(address, size, permission);
}
else
{
return VirtualProtect(address, size, GetProtection(permission), out _);
return WindowsApi.VirtualProtect(address, size, WindowsApi.GetProtection(permission), out _);
}
}
private static MemoryProtection GetProtection(MemoryPermission permission)
public static bool Reprotect4KB(IntPtr address, IntPtr size, MemoryPermission permission, bool forView)
{
return permission switch
ulong uaddress = (ulong)address;
ulong usize = (ulong)size;
while (usize > 0)
{
MemoryPermission.None => MemoryProtection.NoAccess,
MemoryPermission.Read => MemoryProtection.ReadOnly,
MemoryPermission.ReadAndWrite => MemoryProtection.ReadWrite,
MemoryPermission.ReadAndExecute => MemoryProtection.ExecuteRead,
MemoryPermission.ReadWriteExecute => MemoryProtection.ExecuteReadWrite,
MemoryPermission.Execute => MemoryProtection.Execute,
_ => throw new MemoryProtectionException(permission)
};
if (!WindowsApi.VirtualProtect((IntPtr)uaddress, (IntPtr)PageSize, WindowsApi.GetProtection(permission), out _))
{
return false;
}
uaddress += PageSize;
usize -= PageSize;
}
return true;
}
public static bool Free(IntPtr address)
{
return VirtualFree(address, IntPtr.Zero, AllocationType.Release);
}
private static int GetEmulatedHandle()
{
// Assumes we have the handle lock.
for (int i = 0; i < _emulatedShared.Length; i++)
{
if (_emulatedShared[i] == null)
{
return i + 1;
}
}
throw new InvalidProgramException("Too many shared memory handles were created.");
}
public static bool EmulatedHandleValid(ref int handle)
{
handle--;
return handle >= 0 && handle < _emulatedShared.Length && _emulatedShared[handle] != null;
return WindowsApi.VirtualFree(address, IntPtr.Zero, AllocationType.Release);
}
public static IntPtr CreateSharedMemory(IntPtr size, bool reserve)
{
if (UseWin10Placeholders && reserve)
var prot = reserve ? FileMapProtection.SectionReserve : FileMapProtection.SectionCommit;
IntPtr handle = WindowsApi.CreateFileMapping(
WindowsApi.InvalidHandleValue,
IntPtr.Zero,
FileMapProtection.PageReadWrite | prot,
(uint)(size.ToInt64() >> 32),
(uint)size.ToInt64(),
null);
if (handle == IntPtr.Zero)
{
lock (_emulatedHandleLock)
{
int handle = GetEmulatedHandle();
_emulatedShared[handle - 1] = new EmulatedSharedMemoryWindows((ulong)size);
_emulatedSharedList.Add(_emulatedShared[handle - 1]);
return (IntPtr)handle;
}
throw new OutOfMemoryException();
}
else
{
var prot = reserve ? FileMapProtection.SectionReserve : FileMapProtection.SectionCommit;
IntPtr handle = CreateFileMapping(
InvalidHandleValue,
IntPtr.Zero,
FileMapProtection.PageReadWrite | prot,
(uint)(size.ToInt64() >> 32),
(uint)size.ToInt64(),
null);
if (handle == IntPtr.Zero)
{
throw new OutOfMemoryException();
}
return handle;
}
return handle;
}
public static void DestroySharedMemory(IntPtr handle)
{
if (UseWin10Placeholders)
{
lock (_emulatedHandleLock)
{
int iHandle = (int)(ulong)handle;
if (EmulatedHandleValid(ref iHandle))
{
_emulatedSharedList.Remove(_emulatedShared[iHandle]);
_emulatedShared[iHandle].Dispose();
_emulatedShared[iHandle] = null;
return;
}
}
}
if (!CloseHandle(handle))
if (!WindowsApi.CloseHandle(handle))
{
throw new ArgumentException("Invalid handle.", nameof(handle));
}
@ -253,20 +186,7 @@ namespace Ryujinx.Memory
public static IntPtr MapSharedMemory(IntPtr handle)
{
if (UseWin10Placeholders)
{
lock (_emulatedHandleLock)
{
int iHandle = (int)(ulong)handle;
if (EmulatedHandleValid(ref iHandle))
{
return _emulatedShared[iHandle].Map();
}
}
}
IntPtr ptr = MapViewOfFile(handle, 4 | 2, 0, 0, IntPtr.Zero);
IntPtr ptr = WindowsApi.MapViewOfFile(handle, 4 | 2, 0, 0, IntPtr.Zero);
if (ptr == IntPtr.Zero)
{
@ -278,24 +198,15 @@ namespace Ryujinx.Memory
public static void UnmapSharedMemory(IntPtr address)
{
if (UseWin10Placeholders)
{
lock (_emulatedHandleLock)
{
foreach (EmulatedSharedMemoryWindows shared in _emulatedSharedList)
{
if (shared.Unmap((ulong)address))
{
return;
}
}
}
}
if (!UnmapViewOfFile(address))
if (!WindowsApi.UnmapViewOfFile(address))
{
throw new ArgumentException("Invalid address.", nameof(address));
}
}
public static bool RetryFromAccessViolation()
{
return _placeholders.RetryFromAccessViolation();
}
}
}

View File

@ -21,7 +21,23 @@ namespace Ryujinx.Memory
MAP_PRIVATE = 2,
MAP_ANONYMOUS = 4,
MAP_NORESERVE = 8,
MAP_UNLOCKED = 16
MAP_FIXED = 16,
MAP_UNLOCKED = 32
}
[Flags]
public enum OpenFlags : uint
{
O_RDONLY = 0,
O_WRONLY = 1,
O_RDWR = 2,
O_CREAT = 4,
O_EXCL = 8,
O_NOCTTY = 16,
O_TRUNC = 32,
O_APPEND = 64,
O_NONBLOCK = 128,
O_SYNC = 256,
}
private const int MAP_ANONYMOUS_LINUX_GENERIC = 0x20;
@ -50,6 +66,24 @@ namespace Ryujinx.Memory
[DllImport("libc", SetLastError = true)]
public static extern int madvise(IntPtr address, ulong size, int advice);
[DllImport("libc", SetLastError = true)]
public static extern int mkstemp(IntPtr template);
[DllImport("libc", SetLastError = true)]
public static extern int unlink(IntPtr pathname);
[DllImport("libc", SetLastError = true)]
public static extern int ftruncate(int fildes, IntPtr length);
[DllImport("libc", SetLastError = true)]
public static extern int close(int fd);
[DllImport("libc", SetLastError = true)]
public static extern int shm_open(IntPtr name, int oflag, uint mode);
[DllImport("libc", SetLastError = true)]
public static extern int shm_unlink(IntPtr name);
private static int MmapFlagsToSystemFlags(MmapFlags flags)
{
int result = 0;
@ -64,6 +98,11 @@ namespace Ryujinx.Memory
result |= (int)MmapFlags.MAP_PRIVATE;
}
if (flags.HasFlag(MmapFlags.MAP_FIXED))
{
result |= (int)MmapFlags.MAP_FIXED;
}
if (flags.HasFlag(MmapFlags.MAP_ANONYMOUS))
{
if (OperatingSystem.IsLinux())

View File

@ -1,6 +1,6 @@
namespace Ryujinx.Memory
{
class PageTable<T> where T : unmanaged
public class PageTable<T> where T : unmanaged
{
public const int PageBits = 12;
public const int PageSize = 1 << PageBits;

View File

@ -1,71 +0,0 @@
using System;
namespace Ryujinx.Memory.Range
{
/// <summary>
/// Range of memory composed of an address and size.
/// </summary>
public struct HostMemoryRange : IEquatable<HostMemoryRange>
{
/// <summary>
/// An empty memory range, with a null address and zero size.
/// </summary>
public static HostMemoryRange Empty => new HostMemoryRange(0, 0);
/// <summary>
/// Start address of the range.
/// </summary>
public nuint Address { get; }
/// <summary>
/// Size of the range in bytes.
/// </summary>
public ulong Size { get; }
/// <summary>
/// Address where the range ends (exclusive).
/// </summary>
public nuint EndAddress => Address + (nuint)Size;
/// <summary>
/// Creates a new memory range with the specified address and size.
/// </summary>
/// <param name="address">Start address</param>
/// <param name="size">Size in bytes</param>
public HostMemoryRange(nuint address, ulong size)
{
Address = address;
Size = size;
}
/// <summary>
/// Checks if the range overlaps with another.
/// </summary>
/// <param name="other">The other range to check for overlap</param>
/// <returns>True if the ranges overlap, false otherwise</returns>
public bool OverlapsWith(HostMemoryRange other)
{
nuint thisAddress = Address;
nuint thisEndAddress = EndAddress;
nuint otherAddress = other.Address;
nuint otherEndAddress = other.EndAddress;
return thisAddress < otherEndAddress && otherAddress < thisEndAddress;
}
public override bool Equals(object obj)
{
return obj is HostMemoryRange other && Equals(other);
}
public bool Equals(HostMemoryRange other)
{
return Address == other.Address && Size == other.Size;
}
public override int GetHashCode()
{
return HashCode.Combine(Address, Size);
}
}
}

View File

@ -188,6 +188,30 @@ namespace Ryujinx.Memory.Tracking
return VirtualMemoryEvent(address, 1, write);
}
/// <summary>
/// Signal that a virtual memory event happened at the given location.
/// This is similar VirtualMemoryEvent, but on Windows, it might also return true after a partial unmap.
/// This should only be called from the exception handler.
/// </summary>
/// <param name="address">Virtual address accessed</param>
/// <param name="size">Size of the region affected in bytes</param>
/// <param name="write">Whether the region was written to or read</param>
/// <param name="precise">True if the access is precise, false otherwise</param>
/// <returns>True if the event triggered any tracking regions, false otherwise</returns>
public bool VirtualMemoryEventEh(ulong address, ulong size, bool write, bool precise = false)
{
// Windows has a limitation, it can't do partial unmaps.
// For this reason, we need to unmap the whole range and then remap the sub-ranges.
// When this happens, we might have caused a undesirable access violation from the time that the range was unmapped.
// In this case, try again as the memory might be mapped now.
if (OperatingSystem.IsWindows() && MemoryManagementWindows.RetryFromAccessViolation())
{
return true;
}
return VirtualMemoryEvent(address, size, write, precise);
}
/// <summary>
/// Signal that a virtual memory event happened at the given location.
/// This can be flagged as a precise event, which will avoid reprotection and call special handlers if possible.

View File

@ -144,9 +144,11 @@ namespace Ryujinx.Memory.Tracking
{
lock (_preActionLock)
{
RegionSignal action = Interlocked.Exchange(ref _preAction, null);
_preAction?.Invoke(address, size);
action?.Invoke(address, size);
// The action is removed after it returns, to ensure that the null check above succeeds when
// it's still in progress rather than continuing and possibly missing a required data flush.
Interlocked.Exchange(ref _preAction, null);
}
}
finally

View File

@ -1,703 +0,0 @@
using Ryujinx.Memory.Range;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.InteropServices;
namespace Ryujinx.Memory.WindowsShared
{
class EmulatedSharedMemoryWindows : IDisposable
{
private static readonly IntPtr InvalidHandleValue = new IntPtr(-1);
private static readonly IntPtr CurrentProcessHandle = new IntPtr(-1);
public const int MappingBits = 16; // Windows 64kb granularity.
public const ulong MappingGranularity = 1 << MappingBits;
public const ulong MappingMask = MappingGranularity - 1;
public const ulong BackingSize32GB = 32UL * 1024UL * 1024UL * 1024UL; // Reasonable max size of 32GB.
private class SharedMemoryMapping : INonOverlappingRange
{
public ulong Address { get; }
public ulong Size { get; private set; }
public ulong EndAddress { get; private set; }
public List<int> Blocks;
public SharedMemoryMapping(ulong address, ulong size, List<int> blocks = null)
{
Address = address;
Size = size;
EndAddress = address + size;
Blocks = blocks ?? new List<int>();
}
public bool OverlapsWith(ulong address, ulong size)
{
return Address < address + size && address < EndAddress;
}
public void ExtendTo(ulong endAddress, RangeList<SharedMemoryMapping> list)
{
EndAddress = endAddress;
Size = endAddress - Address;
list.UpdateEndAddress(this);
}
public void AddBlocks(IEnumerable<int> blocks)
{
if (Blocks.Count > 0 && blocks.Count() > 0 && Blocks.Last() == blocks.First())
{
Blocks.AddRange(blocks.Skip(1));
}
else
{
Blocks.AddRange(blocks);
}
}
public INonOverlappingRange Split(ulong splitAddress)
{
SharedMemoryMapping newRegion = new SharedMemoryMapping(splitAddress, EndAddress - splitAddress);
int end = (int)((EndAddress + MappingMask) >> MappingBits);
int start = (int)(Address >> MappingBits);
Size = splitAddress - Address;
EndAddress = splitAddress;
int splitEndBlock = (int)((splitAddress + MappingMask) >> MappingBits);
int splitStartBlock = (int)(splitAddress >> MappingBits);
newRegion.AddBlocks(Blocks.Skip(splitStartBlock - start));
Blocks.RemoveRange(splitEndBlock - start, end - splitEndBlock);
return newRegion;
}
}
[DllImport("kernel32.dll", SetLastError = true)]
private static extern IntPtr CreateFileMapping(
IntPtr hFile,
IntPtr lpFileMappingAttributes,
FileMapProtection flProtect,
uint dwMaximumSizeHigh,
uint dwMaximumSizeLow,
[MarshalAs(UnmanagedType.LPWStr)] string lpName);
[DllImport("kernel32.dll", SetLastError = true)]
private static extern bool CloseHandle(IntPtr hObject);
[DllImport("KernelBase.dll", SetLastError = true)]
private static extern IntPtr VirtualAlloc2(
IntPtr process,
IntPtr lpAddress,
IntPtr dwSize,
AllocationType flAllocationType,
MemoryProtection flProtect,
IntPtr extendedParameters,
ulong parameterCount);
[DllImport("kernel32.dll", SetLastError = true)]
private static extern bool VirtualFree(IntPtr lpAddress, IntPtr dwSize, AllocationType dwFreeType);
[DllImport("KernelBase.dll", SetLastError = true)]
private static extern IntPtr MapViewOfFile3(
IntPtr hFileMappingObject,
IntPtr process,
IntPtr baseAddress,
ulong offset,
IntPtr dwNumberOfBytesToMap,
ulong allocationType,
MemoryProtection dwDesiredAccess,
IntPtr extendedParameters,
ulong parameterCount);
[DllImport("KernelBase.dll", SetLastError = true)]
private static extern bool UnmapViewOfFile2(IntPtr process, IntPtr lpBaseAddress, ulong unmapFlags);
private ulong _size;
private object _lock = new object();
private ulong _backingSize;
private IntPtr _backingMemHandle;
private int _backingEnd;
private int _backingAllocated;
private Queue<int> _backingFreeList;
private List<ulong> _mappedBases;
private RangeList<SharedMemoryMapping> _mappings;
private SharedMemoryMapping[] _foundMappings = new SharedMemoryMapping[32];
private PlaceholderList _placeholders;
public EmulatedSharedMemoryWindows(ulong size)
{
ulong backingSize = BackingSize32GB;
_size = size;
_backingSize = backingSize;
_backingMemHandle = CreateFileMapping(
InvalidHandleValue,
IntPtr.Zero,
FileMapProtection.PageReadWrite | FileMapProtection.SectionReserve,
(uint)(backingSize >> 32),
(uint)backingSize,
null);
if (_backingMemHandle == IntPtr.Zero)
{
throw new OutOfMemoryException();
}
_backingFreeList = new Queue<int>();
_mappings = new RangeList<SharedMemoryMapping>();
_mappedBases = new List<ulong>();
_placeholders = new PlaceholderList(size >> MappingBits);
}
private (ulong granularStart, ulong granularEnd) GetAlignedRange(ulong address, ulong size)
{
return (address & (~MappingMask), (address + size + MappingMask) & (~MappingMask));
}
private void Commit(ulong address, ulong size)
{
(ulong granularStart, ulong granularEnd) = GetAlignedRange(address, size);
ulong endAddress = address + size;
lock (_lock)
{
// Search a bit before and after the new mapping.
// When adding our new mapping, we may need to join an existing mapping into our new mapping (or in some cases, to the other side!)
ulong searchStart = granularStart == 0 ? 0 : (granularStart - 1);
int mappingCount = _mappings.FindOverlapsNonOverlapping(searchStart, (granularEnd - searchStart) + 1, ref _foundMappings);
int first = -1;
int last = -1;
SharedMemoryMapping startOverlap = null;
SharedMemoryMapping endOverlap = null;
int lastIndex = (int)(address >> MappingBits);
int endIndex = (int)((endAddress + MappingMask) >> MappingBits);
int firstBlock = -1;
int endBlock = -1;
for (int i = 0; i < mappingCount; i++)
{
SharedMemoryMapping mapping = _foundMappings[i];
if (mapping.Address < address)
{
if (mapping.EndAddress >= address)
{
startOverlap = mapping;
}
if ((int)((mapping.EndAddress - 1) >> MappingBits) == lastIndex)
{
lastIndex = (int)((mapping.EndAddress + MappingMask) >> MappingBits);
firstBlock = mapping.Blocks.Last();
}
}
if (mapping.EndAddress > endAddress)
{
if (mapping.Address <= endAddress)
{
endOverlap = mapping;
}
if ((int)((mapping.Address) >> MappingBits) + 1 == endIndex)
{
endIndex = (int)((mapping.Address) >> MappingBits);
endBlock = mapping.Blocks.First();
}
}
if (mapping.OverlapsWith(address, size))
{
if (first == -1)
{
first = i;
}
last = i;
}
}
if (startOverlap == endOverlap && startOverlap != null)
{
// Already fully committed.
return;
}
var blocks = new List<int>();
int lastBlock = -1;
if (firstBlock != -1)
{
blocks.Add(firstBlock);
lastBlock = firstBlock;
}
bool hasMapped = false;
Action map = () =>
{
if (!hasMapped)
{
_placeholders.EnsurePlaceholders(address >> MappingBits, (granularEnd - granularStart) >> MappingBits, SplitPlaceholder);
hasMapped = true;
}
// There's a gap between this index and the last. Allocate blocks to fill it.
blocks.Add(MapBackingBlock(MappingGranularity * (ulong)lastIndex++));
};
if (first != -1)
{
for (int i = first; i <= last; i++)
{
SharedMemoryMapping mapping = _foundMappings[i];
int mapIndex = (int)(mapping.Address >> MappingBits);
while (lastIndex < mapIndex)
{
map();
}
if (lastBlock == mapping.Blocks[0])
{
blocks.AddRange(mapping.Blocks.Skip(1));
}
else
{
blocks.AddRange(mapping.Blocks);
}
lastIndex = (int)((mapping.EndAddress - 1) >> MappingBits) + 1;
}
}
while (lastIndex < endIndex)
{
map();
}
if (endBlock != -1 && endBlock != lastBlock)
{
blocks.Add(endBlock);
}
if (startOverlap != null && endOverlap != null)
{
// Both sides should be coalesced. Extend the start overlap to contain the end overlap, and add together their blocks.
_mappings.Remove(endOverlap);
startOverlap.ExtendTo(endOverlap.EndAddress, _mappings);
startOverlap.AddBlocks(blocks);
startOverlap.AddBlocks(endOverlap.Blocks);
}
else if (startOverlap != null)
{
startOverlap.ExtendTo(endAddress, _mappings);
startOverlap.AddBlocks(blocks);
}
else
{
var mapping = new SharedMemoryMapping(address, size, blocks);
if (endOverlap != null)
{
mapping.ExtendTo(endOverlap.EndAddress, _mappings);
mapping.AddBlocks(endOverlap.Blocks);
_mappings.Remove(endOverlap);
}
_mappings.Add(mapping);
}
}
}
private void Decommit(ulong address, ulong size)
{
(ulong granularStart, ulong granularEnd) = GetAlignedRange(address, size);
ulong endAddress = address + size;
lock (_lock)
{
int mappingCount = _mappings.FindOverlapsNonOverlapping(granularStart, granularEnd - granularStart, ref _foundMappings);
int first = -1;
int last = -1;
for (int i = 0; i < mappingCount; i++)
{
SharedMemoryMapping mapping = _foundMappings[i];
if (mapping.OverlapsWith(address, size))
{
if (first == -1)
{
first = i;
}
last = i;
}
}
if (first == -1)
{
return; // Could not find any regions to decommit.
}
int lastReleasedBlock = -1;
bool releasedFirst = false;
bool releasedLast = false;
for (int i = last; i >= first; i--)
{
SharedMemoryMapping mapping = _foundMappings[i];
bool releaseEnd = true;
bool releaseStart = true;
if (i == last)
{
// If this is the last region, do not release the block if there is a page ahead of us, or the block continues after us. (it is keeping the block alive)
releaseEnd = last == mappingCount - 1;
// If the end region starts after the decommit end address, split and readd it after modifying its base address.
if (mapping.EndAddress > endAddress)
{
var newMapping = (SharedMemoryMapping)mapping.Split(endAddress);
_mappings.UpdateEndAddress(mapping);
_mappings.Add(newMapping);
if ((endAddress & MappingMask) != 0)
{
releaseEnd = false;
}
}
releasedLast = releaseEnd;
}
if (i == first)
{
// If this is the first region, do not release the block if there is a region behind us. (it is keeping the block alive)
releaseStart = first == 0;
// If the first region starts before the decommit address, split it by modifying its end address.
if (mapping.Address < address)
{
var oldMapping = mapping;
mapping = (SharedMemoryMapping)mapping.Split(address);
_mappings.UpdateEndAddress(oldMapping);
if ((address & MappingMask) != 0)
{
releaseStart = false;
}
}
releasedFirst = releaseStart;
}
_mappings.Remove(mapping);
ulong releasePointer = (mapping.EndAddress + MappingMask) & (~MappingMask);
for (int j = mapping.Blocks.Count - 1; j >= 0; j--)
{
int blockId = mapping.Blocks[j];
releasePointer -= MappingGranularity;
if (lastReleasedBlock == blockId)
{
// When committed regions are fragmented, multiple will have the same block id for their start/end granular block.
// Avoid releasing these blocks twice.
continue;
}
if ((j != 0 || releaseStart) && (j != mapping.Blocks.Count - 1 || releaseEnd))
{
ReleaseBackingBlock(releasePointer, blockId);
}
lastReleasedBlock = blockId;
}
}
ulong placeholderStart = (granularStart >> MappingBits) + (releasedFirst ? 0UL : 1UL);
ulong placeholderEnd = (granularEnd >> MappingBits) - (releasedLast ? 0UL : 1UL);
if (placeholderEnd > placeholderStart)
{
_placeholders.RemovePlaceholders(placeholderStart, placeholderEnd - placeholderStart, CoalescePlaceholder);
}
}
}
public bool CommitMap(IntPtr address, IntPtr size)
{
lock (_lock)
{
foreach (ulong mapping in _mappedBases)
{
ulong offset = (ulong)address - mapping;
if (offset < _size)
{
Commit(offset, (ulong)size);
return true;
}
}
}
return false;
}
public bool DecommitMap(IntPtr address, IntPtr size)
{
lock (_lock)
{
foreach (ulong mapping in _mappedBases)
{
ulong offset = (ulong)address - mapping;
if (offset < _size)
{
Decommit(offset, (ulong)size);
return true;
}
}
}
return false;
}
private int MapBackingBlock(ulong offset)
{
bool allocate = false;
int backing;
if (_backingFreeList.Count > 0)
{
backing = _backingFreeList.Dequeue();
}
else
{
if (_backingAllocated == _backingEnd)
{
// Allocate the backing.
_backingAllocated++;
allocate = true;
}
backing = _backingEnd++;
}
ulong backingOffset = MappingGranularity * (ulong)backing;
foreach (ulong baseAddress in _mappedBases)
{
CommitToMap(baseAddress, offset, MappingGranularity, backingOffset, allocate);
allocate = false;
}
return backing;
}
private void ReleaseBackingBlock(ulong offset, int id)
{
foreach (ulong baseAddress in _mappedBases)
{
DecommitFromMap(baseAddress, offset);
}
if (_backingEnd - 1 == id)
{
_backingEnd = id;
}
else
{
_backingFreeList.Enqueue(id);
}
}
public IntPtr Map()
{
IntPtr newMapping = VirtualAlloc2(
CurrentProcessHandle,
IntPtr.Zero,
(IntPtr)_size,
AllocationType.Reserve | AllocationType.ReservePlaceholder,
MemoryProtection.NoAccess,
IntPtr.Zero,
0);
if (newMapping == IntPtr.Zero)
{
throw new OutOfMemoryException();
}
// Apply all existing mappings to the new mapping
lock (_lock)
{
int lastBlock = -1;
foreach (SharedMemoryMapping mapping in _mappings)
{
ulong blockAddress = mapping.Address & (~MappingMask);
foreach (int block in mapping.Blocks)
{
if (block != lastBlock)
{
ulong backingOffset = MappingGranularity * (ulong)block;
CommitToMap((ulong)newMapping, blockAddress, MappingGranularity, backingOffset, false);
lastBlock = block;
}
blockAddress += MappingGranularity;
}
}
_mappedBases.Add((ulong)newMapping);
}
return newMapping;
}
private void SplitPlaceholder(ulong address, ulong size)
{
ulong byteAddress = address << MappingBits;
IntPtr byteSize = (IntPtr)(size << MappingBits);
foreach (ulong mapAddress in _mappedBases)
{
bool result = VirtualFree((IntPtr)(mapAddress + byteAddress), byteSize, AllocationType.PreservePlaceholder | AllocationType.Release);
if (!result)
{
throw new InvalidOperationException("Placeholder could not be split.");
}
}
}
private void CoalescePlaceholder(ulong address, ulong size)
{
ulong byteAddress = address << MappingBits;
IntPtr byteSize = (IntPtr)(size << MappingBits);
foreach (ulong mapAddress in _mappedBases)
{
bool result = VirtualFree((IntPtr)(mapAddress + byteAddress), byteSize, AllocationType.CoalescePlaceholders | AllocationType.Release);
if (!result)
{
throw new InvalidOperationException("Placeholder could not be coalesced.");
}
}
}
private void CommitToMap(ulong mapAddress, ulong address, ulong size, ulong backingOffset, bool allocate)
{
IntPtr targetAddress = (IntPtr)(mapAddress + address);
// Assume the placeholder worked (or already exists)
// Map the backing memory into the mapped location.
IntPtr mapped = MapViewOfFile3(
_backingMemHandle,
CurrentProcessHandle,
targetAddress,
backingOffset,
(IntPtr)MappingGranularity,
0x4000, // REPLACE_PLACEHOLDER
MemoryProtection.ReadWrite,
IntPtr.Zero,
0);
if (mapped == IntPtr.Zero)
{
throw new InvalidOperationException($"Could not map view of backing memory. (va=0x{address:X16} size=0x{size:X16}, error code {Marshal.GetLastWin32Error()})");
}
if (allocate)
{
// Commit this part of the shared memory.
VirtualAlloc2(CurrentProcessHandle, targetAddress, (IntPtr)MappingGranularity, AllocationType.Commit, MemoryProtection.ReadWrite, IntPtr.Zero, 0);
}
}
private void DecommitFromMap(ulong baseAddress, ulong address)
{
UnmapViewOfFile2(CurrentProcessHandle, (IntPtr)(baseAddress + address), 2);
}
public bool Unmap(ulong baseAddress)
{
lock (_lock)
{
if (_mappedBases.Remove(baseAddress))
{
int lastBlock = -1;
foreach (SharedMemoryMapping mapping in _mappings)
{
ulong blockAddress = mapping.Address & (~MappingMask);
foreach (int block in mapping.Blocks)
{
if (block != lastBlock)
{
DecommitFromMap(baseAddress, blockAddress);
lastBlock = block;
}
blockAddress += MappingGranularity;
}
}
if (!VirtualFree((IntPtr)baseAddress, (IntPtr)0, AllocationType.Release))
{
throw new InvalidOperationException("Couldn't free mapping placeholder.");
}
return true;
}
return false;
}
}
public void Dispose()
{
// Remove all file mappings
lock (_lock)
{
foreach (ulong baseAddress in _mappedBases.ToArray())
{
Unmap(baseAddress);
}
}
// Finally, delete the file mapping.
CloseHandle(_backingMemHandle);
}
}
}

View File

@ -0,0 +1,740 @@
using System;
using System.Collections.Generic;
namespace Ryujinx.Memory.WindowsShared
{
/// <summary>
/// An Augmented Interval Tree based off of the "TreeDictionary"'s Red-Black Tree. Allows fast overlap checking of ranges.
/// </summary>
/// <typeparam name="K">Key</typeparam>
/// <typeparam name="V">Value</typeparam>
class IntervalTree<K, V> where K : IComparable<K>
{
private const int ArrayGrowthSize = 32;
private const bool Black = true;
private const bool Red = false;
private IntervalTreeNode<K, V> _root = null;
private int _count = 0;
public int Count => _count;
public IntervalTree() { }
#region Public Methods
/// <summary>
/// Gets the values of the interval whose key is <paramref name="key"/>.
/// </summary>
/// <param name="key">Key of the node value to get</param>
/// <param name="value">Value with the given <paramref name="key"/></param>
/// <returns>True if the key is on the dictionary, false otherwise</returns>
public bool TryGet(K key, out V value)
{
IntervalTreeNode<K, V> node = GetNode(key);
if (node == null)
{
value = default;
return false;
}
value = node.Value;
return true;
}
/// <summary>
/// Returns the start addresses of the intervals whose start and end keys overlap the given range.
/// </summary>
/// <param name="start">Start of the range</param>
/// <param name="end">End of the range</param>
/// <param name="overlaps">Overlaps array to place results in</param>
/// <param name="overlapCount">Index to start writing results into the array. Defaults to 0</param>
/// <returns>Number of intervals found</returns>
public int Get(K start, K end, ref IntervalTreeNode<K, V>[] overlaps, int overlapCount = 0)
{
GetNodes(_root, start, end, ref overlaps, ref overlapCount);
return overlapCount;
}
/// <summary>
/// Adds a new interval into the tree whose start is <paramref name="start"/>, end is <paramref name="end"/> and value is <paramref name="value"/>.
/// </summary>
/// <param name="start">Start of the range to add</param>
/// <param name="end">End of the range to insert</param>
/// <param name="value">Value to add</param>
/// <exception cref="ArgumentNullException"><paramref name="value"/> is null</exception>
public void Add(K start, K end, V value)
{
if (value == null)
{
throw new ArgumentNullException(nameof(value));
}
BSTInsert(start, end, value, null, out _);
}
/// <summary>
/// Removes a value from the tree, searching for it with <paramref name="key"/>.
/// </summary>
/// <param name="key">Key of the node to remove</param>
/// <returns>Number of deleted values</returns>
public int Remove(K key)
{
return Remove(GetNode(key));
}
/// <summary>
/// Removes a value from the tree, searching for it with <paramref name="key"/>.
/// </summary>
/// <param name="nodeToDelete">Node to be removed</param>
/// <returns>Number of deleted values</returns>
public int Remove(IntervalTreeNode<K, V> nodeToDelete)
{
if (nodeToDelete == null)
{
return 0;
}
Delete(nodeToDelete);
_count--;
return 1;
}
/// <summary>
/// Adds all the nodes in the dictionary into <paramref name="list"/>.
/// </summary>
/// <returns>A list of all values sorted by Key Order</returns>
public List<V> AsList()
{
List<V> list = new List<V>();
AddToList(_root, list);
return list;
}
#endregion
#region Private Methods (BST)
/// <summary>
/// Adds all values that are children of or contained within <paramref name="node"/> into <paramref name="list"/>, in Key Order.
/// </summary>
/// <param name="node">The node to search for values within</param>
/// <param name="list">The list to add values to</param>
private void AddToList(IntervalTreeNode<K, V> node, List<V> list)
{
if (node == null)
{
return;
}
AddToList(node.Left, list);
list.Add(node.Value);
AddToList(node.Right, list);
}
/// <summary>
/// Retrieve the node reference whose key is <paramref name="key"/>, or null if no such node exists.
/// </summary>
/// <param name="key">Key of the node to get</param>
/// <exception cref="ArgumentNullException"><paramref name="key"/> is null</exception>
/// <returns>Node reference in the tree</returns>
private IntervalTreeNode<K, V> GetNode(K key)
{
if (key == null)
{
throw new ArgumentNullException(nameof(key));
}
IntervalTreeNode<K, V> node = _root;
while (node != null)
{
int cmp = key.CompareTo(node.Start);
if (cmp < 0)
{
node = node.Left;
}
else if (cmp > 0)
{
node = node.Right;
}
else
{
return node;
}
}
return null;
}
/// <summary>
/// Retrieve all nodes that overlap the given start and end keys.
/// </summary>
/// <param name="start">Start of the range</param>
/// <param name="end">End of the range</param>
/// <param name="overlaps">Overlaps array to place results in</param>
/// <param name="overlapCount">Overlaps count to update</param>
private void GetNodes(IntervalTreeNode<K, V> node, K start, K end, ref IntervalTreeNode<K, V>[] overlaps, ref int overlapCount)
{
if (node == null || start.CompareTo(node.Max) >= 0)
{
return;
}
GetNodes(node.Left, start, end, ref overlaps, ref overlapCount);
bool endsOnRight = end.CompareTo(node.Start) > 0;
if (endsOnRight)
{
if (start.CompareTo(node.End) < 0)
{
if (overlaps.Length >= overlapCount)
{
Array.Resize(ref overlaps, overlapCount + ArrayGrowthSize);
}
overlaps[overlapCount++] = node;
}
GetNodes(node.Right, start, end, ref overlaps, ref overlapCount);
}
}
/// <summary>
/// Propagate an increase in max value starting at the given node, heading up the tree.
/// This should only be called if the max increases - not for rebalancing or removals.
/// </summary>
/// <param name="node">The node to start propagating from</param>
private void PropagateIncrease(IntervalTreeNode<K, V> node)
{
K max = node.Max;
IntervalTreeNode<K, V> ptr = node;
while ((ptr = ptr.Parent) != null)
{
if (max.CompareTo(ptr.Max) > 0)
{
ptr.Max = max;
}
else
{
break;
}
}
}
/// <summary>
/// Propagate recalculating max value starting at the given node, heading up the tree.
/// This fully recalculates the max value from all children when there is potential for it to decrease.
/// </summary>
/// <param name="node">The node to start propagating from</param>
private void PropagateFull(IntervalTreeNode<K, V> node)
{
IntervalTreeNode<K, V> ptr = node;
do
{
K max = ptr.End;
if (ptr.Left != null && ptr.Left.Max.CompareTo(max) > 0)
{
max = ptr.Left.Max;
}
if (ptr.Right != null && ptr.Right.Max.CompareTo(max) > 0)
{
max = ptr.Right.Max;
}
ptr.Max = max;
} while ((ptr = ptr.Parent) != null);
}
/// <summary>
/// Insertion Mechanism for the interval tree. Similar to a BST insert, with the start of the range as the key.
/// Iterates the tree starting from the root and inserts a new node where all children in the left subtree are less than <paramref name="start"/>, and all children in the right subtree are greater than <paramref name="start"/>.
/// Each node can contain multiple values, and has an end address which is the maximum of all those values.
/// Post insertion, the "max" value of the node and all parents are updated.
/// </summary>
/// <param name="start">Start of the range to insert</param>
/// <param name="end">End of the range to insert</param>
/// <param name="value">Value to insert</param>
/// <param name="updateFactoryCallback">Optional factory used to create a new value if <paramref name="start"/> is already on the tree</param>
/// <param name="outNode">Node that was inserted or modified</param>
/// <returns>True if <paramref name="start"/> was not yet on the tree, false otherwise</returns>
private bool BSTInsert(K start, K end, V value, Func<K, V, V> updateFactoryCallback, out IntervalTreeNode<K, V> outNode)
{
IntervalTreeNode<K, V> parent = null;
IntervalTreeNode<K, V> node = _root;
while (node != null)
{
parent = node;
int cmp = start.CompareTo(node.Start);
if (cmp < 0)
{
node = node.Left;
}
else if (cmp > 0)
{
node = node.Right;
}
else
{
outNode = node;
if (updateFactoryCallback != null)
{
// Replace
node.Value = updateFactoryCallback(start, node.Value);
int endCmp = end.CompareTo(node.End);
if (endCmp > 0)
{
node.End = end;
if (end.CompareTo(node.Max) > 0)
{
node.Max = end;
PropagateIncrease(node);
RestoreBalanceAfterInsertion(node);
}
}
else if (endCmp < 0)
{
node.End = end;
PropagateFull(node);
}
}
return false;
}
}
IntervalTreeNode<K, V> newNode = new IntervalTreeNode<K, V>(start, end, value, parent);
if (newNode.Parent == null)
{
_root = newNode;
}
else if (start.CompareTo(parent.Start) < 0)
{
parent.Left = newNode;
}
else
{
parent.Right = newNode;
}
PropagateIncrease(newNode);
_count++;
RestoreBalanceAfterInsertion(newNode);
outNode = newNode;
return true;
}
/// <summary>
/// Removes the value from the dictionary after searching for it with <paramref name="key">.
/// </summary>
/// <param name="key">Tree node to be removed</param>
private void Delete(IntervalTreeNode<K, V> nodeToDelete)
{
IntervalTreeNode<K, V> replacementNode;
if (LeftOf(nodeToDelete) == null || RightOf(nodeToDelete) == null)
{
replacementNode = nodeToDelete;
}
else
{
replacementNode = PredecessorOf(nodeToDelete);
}
IntervalTreeNode<K, V> tmp = LeftOf(replacementNode) ?? RightOf(replacementNode);
if (tmp != null)
{
tmp.Parent = ParentOf(replacementNode);
}
if (ParentOf(replacementNode) == null)
{
_root = tmp;
}
else if (replacementNode == LeftOf(ParentOf(replacementNode)))
{
ParentOf(replacementNode).Left = tmp;
}
else
{
ParentOf(replacementNode).Right = tmp;
}
if (replacementNode != nodeToDelete)
{
nodeToDelete.Start = replacementNode.Start;
nodeToDelete.Value = replacementNode.Value;
nodeToDelete.End = replacementNode.End;
nodeToDelete.Max = replacementNode.Max;
}
PropagateFull(replacementNode);
if (tmp != null && ColorOf(replacementNode) == Black)
{
RestoreBalanceAfterRemoval(tmp);
}
}
/// <summary>
/// Returns the node with the largest key where <paramref name="node"/> is considered the root node.
/// </summary>
/// <param name="node">Root Node</param>
/// <returns>Node with the maximum key in the tree of <paramref name="node"/></returns>
private static IntervalTreeNode<K, V> Maximum(IntervalTreeNode<K, V> node)
{
IntervalTreeNode<K, V> tmp = node;
while (tmp.Right != null)
{
tmp = tmp.Right;
}
return tmp;
}
/// <summary>
/// Finds the node whose key is immediately less than <paramref name="node"/>.
/// </summary>
/// <param name="node">Node to find the predecessor of</param>
/// <returns>Predecessor of <paramref name="node"/></returns>
private static IntervalTreeNode<K, V> PredecessorOf(IntervalTreeNode<K, V> node)
{
if (node.Left != null)
{
return Maximum(node.Left);
}
IntervalTreeNode<K, V> parent = node.Parent;
while (parent != null && node == parent.Left)
{
node = parent;
parent = parent.Parent;
}
return parent;
}
#endregion
#region Private Methods (RBL)
private void RestoreBalanceAfterRemoval(IntervalTreeNode<K, V> balanceNode)
{
IntervalTreeNode<K, V> ptr = balanceNode;
while (ptr != _root && ColorOf(ptr) == Black)
{
if (ptr == LeftOf(ParentOf(ptr)))
{
IntervalTreeNode<K, V> sibling = RightOf(ParentOf(ptr));
if (ColorOf(sibling) == Red)
{
SetColor(sibling, Black);
SetColor(ParentOf(ptr), Red);
RotateLeft(ParentOf(ptr));
sibling = RightOf(ParentOf(ptr));
}
if (ColorOf(LeftOf(sibling)) == Black && ColorOf(RightOf(sibling)) == Black)
{
SetColor(sibling, Red);
ptr = ParentOf(ptr);
}
else
{
if (ColorOf(RightOf(sibling)) == Black)
{
SetColor(LeftOf(sibling), Black);
SetColor(sibling, Red);
RotateRight(sibling);
sibling = RightOf(ParentOf(ptr));
}
SetColor(sibling, ColorOf(ParentOf(ptr)));
SetColor(ParentOf(ptr), Black);
SetColor(RightOf(sibling), Black);
RotateLeft(ParentOf(ptr));
ptr = _root;
}
}
else
{
IntervalTreeNode<K, V> sibling = LeftOf(ParentOf(ptr));
if (ColorOf(sibling) == Red)
{
SetColor(sibling, Black);
SetColor(ParentOf(ptr), Red);
RotateRight(ParentOf(ptr));
sibling = LeftOf(ParentOf(ptr));
}
if (ColorOf(RightOf(sibling)) == Black && ColorOf(LeftOf(sibling)) == Black)
{
SetColor(sibling, Red);
ptr = ParentOf(ptr);
}
else
{
if (ColorOf(LeftOf(sibling)) == Black)
{
SetColor(RightOf(sibling), Black);
SetColor(sibling, Red);
RotateLeft(sibling);
sibling = LeftOf(ParentOf(ptr));
}
SetColor(sibling, ColorOf(ParentOf(ptr)));
SetColor(ParentOf(ptr), Black);
SetColor(LeftOf(sibling), Black);
RotateRight(ParentOf(ptr));
ptr = _root;
}
}
}
SetColor(ptr, Black);
}
private void RestoreBalanceAfterInsertion(IntervalTreeNode<K, V> balanceNode)
{
SetColor(balanceNode, Red);
while (balanceNode != null && balanceNode != _root && ColorOf(ParentOf(balanceNode)) == Red)
{
if (ParentOf(balanceNode) == LeftOf(ParentOf(ParentOf(balanceNode))))
{
IntervalTreeNode<K, V> sibling = RightOf(ParentOf(ParentOf(balanceNode)));
if (ColorOf(sibling) == Red)
{
SetColor(ParentOf(balanceNode), Black);
SetColor(sibling, Black);
SetColor(ParentOf(ParentOf(balanceNode)), Red);
balanceNode = ParentOf(ParentOf(balanceNode));
}
else
{
if (balanceNode == RightOf(ParentOf(balanceNode)))
{
balanceNode = ParentOf(balanceNode);
RotateLeft(balanceNode);
}
SetColor(ParentOf(balanceNode), Black);
SetColor(ParentOf(ParentOf(balanceNode)), Red);
RotateRight(ParentOf(ParentOf(balanceNode)));
}
}
else
{
IntervalTreeNode<K, V> sibling = LeftOf(ParentOf(ParentOf(balanceNode)));
if (ColorOf(sibling) == Red)
{
SetColor(ParentOf(balanceNode), Black);
SetColor(sibling, Black);
SetColor(ParentOf(ParentOf(balanceNode)), Red);
balanceNode = ParentOf(ParentOf(balanceNode));
}
else
{
if (balanceNode == LeftOf(ParentOf(balanceNode)))
{
balanceNode = ParentOf(balanceNode);
RotateRight(balanceNode);
}
SetColor(ParentOf(balanceNode), Black);
SetColor(ParentOf(ParentOf(balanceNode)), Red);
RotateLeft(ParentOf(ParentOf(balanceNode)));
}
}
}
SetColor(_root, Black);
}
private void RotateLeft(IntervalTreeNode<K, V> node)
{
if (node != null)
{
IntervalTreeNode<K, V> right = RightOf(node);
node.Right = LeftOf(right);
if (node.Right != null)
{
node.Right.Parent = node;
}
IntervalTreeNode<K, V> nodeParent = ParentOf(node);
right.Parent = nodeParent;
if (nodeParent == null)
{
_root = right;
}
else if (node == LeftOf(nodeParent))
{
nodeParent.Left = right;
}
else
{
nodeParent.Right = right;
}
right.Left = node;
node.Parent = right;
PropagateFull(node);
}
}
private void RotateRight(IntervalTreeNode<K, V> node)
{
if (node != null)
{
IntervalTreeNode<K, V> left = LeftOf(node);
node.Left = RightOf(left);
if (node.Left != null)
{
node.Left.Parent = node;
}
IntervalTreeNode<K, V> nodeParent = ParentOf(node);
left.Parent = nodeParent;
if (nodeParent == null)
{
_root = left;
}
else if (node == RightOf(nodeParent))
{
nodeParent.Right = left;
}
else
{
nodeParent.Left = left;
}
left.Right = node;
node.Parent = left;
PropagateFull(node);
}
}
#endregion
#region Safety-Methods
// These methods save memory by allowing us to forego sentinel nil nodes, as well as serve as protection against NullReferenceExceptions.
/// <summary>
/// Returns the color of <paramref name="node"/>, or Black if it is null.
/// </summary>
/// <param name="node">Node</param>
/// <returns>The boolean color of <paramref name="node"/>, or black if null</returns>
private static bool ColorOf(IntervalTreeNode<K, V> node)
{
return node == null || node.Color;
}
/// <summary>
/// Sets the color of <paramref name="node"/> node to <paramref name="color"/>.
/// <br></br>
/// This method does nothing if <paramref name="node"/> is null.
/// </summary>
/// <param name="node">Node to set the color of</param>
/// <param name="color">Color (Boolean)</param>
private static void SetColor(IntervalTreeNode<K, V> node, bool color)
{
if (node != null)
{
node.Color = color;
}
}
/// <summary>
/// This method returns the left node of <paramref name="node"/>, or null if <paramref name="node"/> is null.
/// </summary>
/// <param name="node">Node to retrieve the left child from</param>
/// <returns>Left child of <paramref name="node"/></returns>
private static IntervalTreeNode<K, V> LeftOf(IntervalTreeNode<K, V> node)
{
return node?.Left;
}
/// <summary>
/// This method returns the right node of <paramref name="node"/>, or null if <paramref name="node"/> is null.
/// </summary>
/// <param name="node">Node to retrieve the right child from</param>
/// <returns>Right child of <paramref name="node"/></returns>
private static IntervalTreeNode<K, V> RightOf(IntervalTreeNode<K, V> node)
{
return node?.Right;
}
/// <summary>
/// Returns the parent node of <paramref name="node"/>, or null if <paramref name="node"/> is null.
/// </summary>
/// <param name="node">Node to retrieve the parent from</param>
/// <returns>Parent of <paramref name="node"/></returns>
private static IntervalTreeNode<K, V> ParentOf(IntervalTreeNode<K, V> node)
{
return node?.Parent;
}
#endregion
public bool ContainsKey(K key)
{
return GetNode(key) != null;
}
public void Clear()
{
_root = null;
_count = 0;
}
}
/// <summary>
/// Represents a node in the IntervalTree which contains start and end keys of type K, and a value of generic type V.
/// </summary>
/// <typeparam name="K">Key type of the node</typeparam>
/// <typeparam name="V">Value type of the node</typeparam>
class IntervalTreeNode<K, V>
{
public bool Color = true;
public IntervalTreeNode<K, V> Left = null;
public IntervalTreeNode<K, V> Right = null;
public IntervalTreeNode<K, V> Parent = null;
/// <summary>
/// The start of the range.
/// </summary>
public K Start;
/// <summary>
/// The end of the range.
/// </summary>
public K End;
/// <summary>
/// The maximum end value of this node and all its children.
/// </summary>
public K Max;
/// <summary>
/// Value stored on this node.
/// </summary>
public V Value;
public IntervalTreeNode(K start, K end, V value, IntervalTreeNode<K, V> parent)
{
Start = start;
End = end;
Max = end;
Value = value;
Parent = parent;
}
}
}

View File

@ -1,293 +0,0 @@
using Ryujinx.Memory.Range;
using System;
using System.Diagnostics;
namespace Ryujinx.Memory.WindowsShared
{
/// <summary>
/// A specialized list used for keeping track of Windows 10's memory placeholders.
/// This is used to make splitting a large placeholder into equally small
/// granular chunks much easier, while avoiding slowdown due to a large number of
/// placeholders by coalescing adjacent granular placeholders after they are unused.
/// </summary>
class PlaceholderList
{
private class PlaceholderBlock : IRange
{
public ulong Address { get; }
public ulong Size { get; private set; }
public ulong EndAddress { get; private set; }
public bool IsGranular { get; set; }
public PlaceholderBlock(ulong id, ulong size, bool isGranular)
{
Address = id;
Size = size;
EndAddress = id + size;
IsGranular = isGranular;
}
public bool OverlapsWith(ulong address, ulong size)
{
return Address < address + size && address < EndAddress;
}
public void ExtendTo(ulong end, RangeList<PlaceholderBlock> list)
{
EndAddress = end;
Size = end - Address;
list.UpdateEndAddress(this);
}
}
private RangeList<PlaceholderBlock> _placeholders;
private PlaceholderBlock[] _foundBlocks = new PlaceholderBlock[32];
/// <summary>
/// Create a new list to manage placeholders.
/// Note that a size is measured in granular placeholders.
/// If the placeholder granularity is 65536 bytes, then a 65536 region will be covered by 1 placeholder granularity.
/// </summary>
/// <param name="size">Size measured in granular placeholders</param>
public PlaceholderList(ulong size)
{
_placeholders = new RangeList<PlaceholderBlock>();
_placeholders.Add(new PlaceholderBlock(0, size, false));
}
/// <summary>
/// Ensure that the given range of placeholders is granular.
/// </summary>
/// <param name="id">Start of the range, measured in granular placeholders</param>
/// <param name="size">Size of the range, measured in granular placeholders</param>
/// <param name="splitPlaceholderCallback">Callback function to run when splitting placeholders, calls with (start, middle)</param>
public void EnsurePlaceholders(ulong id, ulong size, Action<ulong, ulong> splitPlaceholderCallback)
{
// Search 1 before and after the placeholders, as we may need to expand/join granular regions surrounding the requested area.
ulong endId = id + size;
ulong searchStartId = id == 0 ? 0 : (id - 1);
int blockCount = _placeholders.FindOverlapsNonOverlapping(searchStartId, (endId - searchStartId) + 1, ref _foundBlocks);
PlaceholderBlock first = _foundBlocks[0];
PlaceholderBlock last = _foundBlocks[blockCount - 1];
bool overlapStart = first.EndAddress >= id && id != 0;
bool overlapEnd = last.Address <= endId;
for (int i = 0; i < blockCount; i++)
{
// Go through all non-granular blocks in the range and create placeholders.
PlaceholderBlock block = _foundBlocks[i];
if (block.Address <= id && block.EndAddress >= endId && block.IsGranular)
{
return; // The region we're searching for is already granular.
}
if (!block.IsGranular)
{
ulong placeholderStart = Math.Max(block.Address, id);
ulong placeholderEnd = Math.Min(block.EndAddress - 1, endId);
if (placeholderStart != block.Address && placeholderStart != block.EndAddress)
{
splitPlaceholderCallback(block.Address, placeholderStart - block.Address);
}
for (ulong j = placeholderStart; j < placeholderEnd; j++)
{
splitPlaceholderCallback(j, 1);
}
}
if (!((block == first && overlapStart) || (block == last && overlapEnd)))
{
// Remove blocks that will be replaced
_placeholders.Remove(block);
}
}
if (overlapEnd)
{
if (!(first == last && overlapStart))
{
_placeholders.Remove(last);
}
if (last.IsGranular)
{
endId = last.EndAddress;
}
else if (last.EndAddress != endId)
{
_placeholders.Add(new PlaceholderBlock(endId, last.EndAddress - endId, false));
}
}
if (overlapStart && first.IsGranular)
{
first.ExtendTo(endId, _placeholders);
}
else
{
if (overlapStart)
{
first.ExtendTo(id, _placeholders);
}
_placeholders.Add(new PlaceholderBlock(id, endId - id, true));
}
ValidateList();
}
/// <summary>
/// Coalesces placeholders in a given region, as they are not being used.
/// This assumes that the region only contains placeholders - all views and allocations must have been replaced with placeholders.
/// </summary>
/// <param name="id">Start of the range, measured in granular placeholders</param>
/// <param name="size">Size of the range, measured in granular placeholders</param>
/// <param name="coalescePlaceholderCallback">Callback function to run when coalescing two placeholders, calls with (start, end)</param>
public void RemovePlaceholders(ulong id, ulong size, Action<ulong, ulong> coalescePlaceholderCallback)
{
ulong endId = id + size;
int blockCount = _placeholders.FindOverlapsNonOverlapping(id, size, ref _foundBlocks);
PlaceholderBlock first = _foundBlocks[0];
PlaceholderBlock last = _foundBlocks[blockCount - 1];
// All granular blocks must have non-granular blocks surrounding them, unless they start at 0.
// We must extend the non-granular blocks into the granular ones. This does mean that we need to search twice.
if (first.IsGranular || last.IsGranular)
{
ulong surroundStart = Math.Max(0, (first.IsGranular && first.Address != 0) ? first.Address - 1 : id);
blockCount = _placeholders.FindOverlapsNonOverlapping(
surroundStart,
(last.IsGranular ? last.EndAddress + 1 : endId) - surroundStart,
ref _foundBlocks);
first = _foundBlocks[0];
last = _foundBlocks[blockCount - 1];
}
if (first == last)
{
return; // Already coalesced.
}
PlaceholderBlock extendBlock = id == 0 ? null : first;
bool newBlock = false;
for (int i = extendBlock == null ? 0 : 1; i < blockCount; i++)
{
// Go through all granular blocks in the range and extend placeholders.
PlaceholderBlock block = _foundBlocks[i];
ulong blockEnd = block.EndAddress;
ulong extendFrom;
ulong extent = Math.Min(blockEnd, endId);
if (block.Address < id && blockEnd > id)
{
block.ExtendTo(id, _placeholders);
extendBlock = null;
}
else
{
_placeholders.Remove(block);
}
if (extendBlock == null)
{
extendFrom = id;
extendBlock = new PlaceholderBlock(id, extent - id, false);
_placeholders.Add(extendBlock);
if (blockEnd > extent)
{
_placeholders.Add(new PlaceholderBlock(extent, blockEnd - extent, true));
// Skip the next non-granular block, and extend from that into the granular block afterwards.
// (assuming that one is still in the requested range)
if (i + 1 < blockCount)
{
extendBlock = _foundBlocks[i + 1];
}
i++;
}
newBlock = true;
}
else
{
extendFrom = extendBlock.Address;
extendBlock.ExtendTo(block.IsGranular ? extent : block.EndAddress, _placeholders);
}
if (block.IsGranular)
{
ulong placeholderStart = Math.Max(block.Address, id);
ulong placeholderEnd = extent;
if (newBlock)
{
placeholderStart++;
newBlock = false;
}
for (ulong j = placeholderStart; j < placeholderEnd; j++)
{
coalescePlaceholderCallback(extendFrom, (j + 1) - extendFrom);
}
if (extent < block.EndAddress)
{
_placeholders.Add(new PlaceholderBlock(placeholderEnd, block.EndAddress - placeholderEnd, true));
ValidateList();
return;
}
}
else
{
coalescePlaceholderCallback(extendFrom, block.EndAddress - extendFrom);
}
}
ValidateList();
}
/// <summary>
/// Ensure that the placeholder list is valid.
/// A valid list should not have any gaps between the placeholders,
/// and there may be no placehonders with the same IsGranular value next to each other.
/// </summary>
[Conditional("DEBUG")]
private void ValidateList()
{
bool isGranular = false;
bool first = true;
ulong lastAddress = 0;
foreach (var placeholder in _placeholders)
{
if (placeholder.Address != lastAddress)
{
throw new InvalidOperationException("Gap in placeholder list.");
}
if (isGranular == placeholder.IsGranular && !first)
{
throw new InvalidOperationException("Placeholder list not alternating.");
}
first = false;
isGranular = placeholder.IsGranular;
lastAddress = placeholder.EndAddress;
}
}
}
}

View File

@ -0,0 +1,633 @@
using System;
using System.Diagnostics;
using System.Threading;
namespace Ryujinx.Memory.WindowsShared
{
/// <summary>
/// Windows memory placeholder manager.
/// </summary>
class PlaceholderManager
{
private const ulong MinimumPageSize = 0x1000;
[ThreadStatic]
private static int _threadLocalPartialUnmapsCount;
private readonly IntervalTree<ulong, ulong> _mappings;
private readonly IntervalTree<ulong, MemoryPermission> _protections;
private readonly ReaderWriterLock _partialUnmapLock;
private int _partialUnmapsCount;
/// <summary>
/// Creates a new instance of the Windows memory placeholder manager.
/// </summary>
public PlaceholderManager()
{
_mappings = new IntervalTree<ulong, ulong>();
_protections = new IntervalTree<ulong, MemoryPermission>();
_partialUnmapLock = new ReaderWriterLock();
}
/// <summary>
/// Reserves a range of the address space to be later mapped as shared memory views.
/// </summary>
/// <param name="address">Start address of the region to reserve</param>
/// <param name="size">Size in bytes of the region to reserve</param>
public void ReserveRange(ulong address, ulong size)
{
lock (_mappings)
{
_mappings.Add(address, address + size, ulong.MaxValue);
}
}
/// <summary>
/// Maps a shared memory view on a previously reserved memory region.
/// </summary>
/// <param name="sharedMemory">Shared memory that will be the backing storage for the view</param>
/// <param name="srcOffset">Offset in the shared memory to map</param>
/// <param name="location">Address to map the view into</param>
/// <param name="size">Size of the view in bytes</param>
public void MapView(IntPtr sharedMemory, ulong srcOffset, IntPtr location, IntPtr size)
{
_partialUnmapLock.AcquireReaderLock(Timeout.Infinite);
try
{
UnmapViewInternal(sharedMemory, location, size);
MapViewInternal(sharedMemory, srcOffset, location, size);
}
finally
{
_partialUnmapLock.ReleaseReaderLock();
}
}
/// <summary>
/// Maps a shared memory view on a previously reserved memory region.
/// </summary>
/// <param name="sharedMemory">Shared memory that will be the backing storage for the view</param>
/// <param name="srcOffset">Offset in the shared memory to map</param>
/// <param name="location">Address to map the view into</param>
/// <param name="size">Size of the view in bytes</param>
/// <exception cref="WindowsApiException">Thrown when the Windows API returns an error mapping the memory</exception>
private void MapViewInternal(IntPtr sharedMemory, ulong srcOffset, IntPtr location, IntPtr size)
{
SplitForMap((ulong)location, (ulong)size, srcOffset);
var ptr = WindowsApi.MapViewOfFile3(
sharedMemory,
WindowsApi.CurrentProcessHandle,
location,
srcOffset,
size,
0x4000,
MemoryProtection.ReadWrite,
IntPtr.Zero,
0);
if (ptr == IntPtr.Zero)
{
throw new WindowsApiException("MapViewOfFile3");
}
}
/// <summary>
/// Splits a larger placeholder, slicing at the start and end address, for a new memory mapping.
/// </summary>
/// <param name="address">Address to split</param>
/// <param name="size">Size of the new region</param>
/// <param name="backingOffset">Offset in the shared memory that will be mapped</param>
private void SplitForMap(ulong address, ulong size, ulong backingOffset)
{
ulong endAddress = address + size;
var overlaps = Array.Empty<IntervalTreeNode<ulong, ulong>>();
lock (_mappings)
{
int count = _mappings.Get(address, endAddress, ref overlaps);
Debug.Assert(count == 1);
Debug.Assert(!IsMapped(overlaps[0].Value));
var overlap = overlaps[0];
// Tree operations might modify the node start/end values, so save a copy before we modify the tree.
ulong overlapStart = overlap.Start;
ulong overlapEnd = overlap.End;
ulong overlapValue = overlap.Value;
_mappings.Remove(overlap);
bool overlapStartsBefore = overlapStart < address;
bool overlapEndsAfter = overlapEnd > endAddress;
if (overlapStartsBefore && overlapEndsAfter)
{
CheckFreeResult(WindowsApi.VirtualFree(
(IntPtr)address,
(IntPtr)size,
AllocationType.Release | AllocationType.PreservePlaceholder));
_mappings.Add(overlapStart, address, overlapValue);
_mappings.Add(endAddress, overlapEnd, AddBackingOffset(overlapValue, endAddress - overlapStart));
}
else if (overlapStartsBefore)
{
ulong overlappedSize = overlapEnd - address;
CheckFreeResult(WindowsApi.VirtualFree(
(IntPtr)address,
(IntPtr)overlappedSize,
AllocationType.Release | AllocationType.PreservePlaceholder));
_mappings.Add(overlapStart, address, overlapValue);
}
else if (overlapEndsAfter)
{
ulong overlappedSize = endAddress - overlapStart;
CheckFreeResult(WindowsApi.VirtualFree(
(IntPtr)overlapStart,
(IntPtr)overlappedSize,
AllocationType.Release | AllocationType.PreservePlaceholder));
_mappings.Add(endAddress, overlapEnd, AddBackingOffset(overlapValue, overlappedSize));
}
_mappings.Add(address, endAddress, backingOffset);
}
}
/// <summary>
/// Unmaps a view that has been previously mapped with <see cref="MapView"/>.
/// </summary>
/// <remarks>
/// For "partial unmaps" (when not the entire mapped range is being unmapped), it might be
/// necessary to unmap the whole range and then remap the sub-ranges that should remain mapped.
/// </remarks>
/// <param name="sharedMemory">Shared memory that the view being unmapped belongs to</param>
/// <param name="location">Address to unmap</param>
/// <param name="size">Size of the region to unmap in bytes</param>
public void UnmapView(IntPtr sharedMemory, IntPtr location, IntPtr size)
{
_partialUnmapLock.AcquireReaderLock(Timeout.Infinite);
try
{
UnmapViewInternal(sharedMemory, location, size);
}
finally
{
_partialUnmapLock.ReleaseReaderLock();
}
}
/// <summary>
/// Unmaps a view that has been previously mapped with <see cref="MapView"/>.
/// </summary>
/// <remarks>
/// For "partial unmaps" (when not the entire mapped range is being unmapped), it might be
/// necessary to unmap the whole range and then remap the sub-ranges that should remain mapped.
/// </remarks>
/// <param name="sharedMemory">Shared memory that the view being unmapped belongs to</param>
/// <param name="location">Address to unmap</param>
/// <param name="size">Size of the region to unmap in bytes</param>
/// <exception cref="WindowsApiException">Thrown when the Windows API returns an error unmapping or remapping the memory</exception>
private void UnmapViewInternal(IntPtr sharedMemory, IntPtr location, IntPtr size)
{
ulong startAddress = (ulong)location;
ulong unmapSize = (ulong)size;
ulong endAddress = startAddress + unmapSize;
var overlaps = Array.Empty<IntervalTreeNode<ulong, ulong>>();
int count = 0;
lock (_mappings)
{
count = _mappings.Get(startAddress, endAddress, ref overlaps);
}
for (int index = 0; index < count; index++)
{
var overlap = overlaps[index];
if (IsMapped(overlap.Value))
{
if (!WindowsApi.UnmapViewOfFile2(WindowsApi.CurrentProcessHandle, (IntPtr)overlap.Start, 2))
{
throw new WindowsApiException("UnmapViewOfFile2");
}
// Tree operations might modify the node start/end values, so save a copy before we modify the tree.
ulong overlapStart = overlap.Start;
ulong overlapEnd = overlap.End;
ulong overlapValue = overlap.Value;
_mappings.Remove(overlap);
_mappings.Add(overlapStart, overlapEnd, ulong.MaxValue);
bool overlapStartsBefore = overlapStart < startAddress;
bool overlapEndsAfter = overlapEnd > endAddress;
if (overlapStartsBefore || overlapEndsAfter)
{
// If the overlap extends beyond the region we are unmapping,
// then we need to re-map the regions that are supposed to remain mapped.
// This is necessary because Windows does not support partial view unmaps.
// That is, you can only fully unmap a view that was previously mapped, you can't just unmap a chunck of it.
LockCookie lockCookie = _partialUnmapLock.UpgradeToWriterLock(Timeout.Infinite);
_partialUnmapsCount++;
if (overlapStartsBefore)
{
ulong remapSize = startAddress - overlapStart;
MapViewInternal(sharedMemory, overlapValue, (IntPtr)overlapStart, (IntPtr)remapSize);
RestoreRangeProtection(overlapStart, remapSize);
}
if (overlapEndsAfter)
{
ulong overlappedSize = endAddress - overlapStart;
ulong remapBackingOffset = overlapValue + overlappedSize;
ulong remapAddress = overlapStart + overlappedSize;
ulong remapSize = overlapEnd - endAddress;
MapViewInternal(sharedMemory, remapBackingOffset, (IntPtr)remapAddress, (IntPtr)remapSize);
RestoreRangeProtection(remapAddress, remapSize);
}
_partialUnmapLock.DowngradeFromWriterLock(ref lockCookie);
}
}
}
CoalesceForUnmap(startAddress, unmapSize);
RemoveProtection(startAddress, unmapSize);
}
/// <summary>
/// Coalesces adjacent placeholders after unmap.
/// </summary>
/// <param name="address">Address of the region that was unmapped</param>
/// <param name="size">Size of the region that was unmapped in bytes</param>
private void CoalesceForUnmap(ulong address, ulong size)
{
ulong endAddress = address + size;
var overlaps = Array.Empty<IntervalTreeNode<ulong, ulong>>();
int unmappedCount = 0;
lock (_mappings)
{
int count = _mappings.Get(address - MinimumPageSize, endAddress + MinimumPageSize, ref overlaps);
if (count < 2)
{
// Nothing to coalesce if we only have 1 or no overlaps.
return;
}
for (int index = 0; index < count; index++)
{
var overlap = overlaps[index];
if (!IsMapped(overlap.Value))
{
if (address > overlap.Start)
{
address = overlap.Start;
}
if (endAddress < overlap.End)
{
endAddress = overlap.End;
}
_mappings.Remove(overlap);
unmappedCount++;
}
}
_mappings.Add(address, endAddress, ulong.MaxValue);
}
if (unmappedCount > 1)
{
size = endAddress - address;
CheckFreeResult(WindowsApi.VirtualFree(
(IntPtr)address,
(IntPtr)size,
AllocationType.Release | AllocationType.CoalescePlaceholders));
}
}
/// <summary>
/// Reprotects a region of memory that has been mapped.
/// </summary>
/// <param name="address">Address of the region to reprotect</param>
/// <param name="size">Size of the region to reprotect in bytes</param>
/// <param name="permission">New permissions</param>
/// <returns>True if the reprotection was successful, false otherwise</returns>
public bool ReprotectView(IntPtr address, IntPtr size, MemoryPermission permission)
{
_partialUnmapLock.AcquireReaderLock(Timeout.Infinite);
try
{
return ReprotectViewInternal(address, size, permission, false);
}
finally
{
_partialUnmapLock.ReleaseReaderLock();
}
}
/// <summary>
/// Reprotects a region of memory that has been mapped.
/// </summary>
/// <param name="address">Address of the region to reprotect</param>
/// <param name="size">Size of the region to reprotect in bytes</param>
/// <param name="permission">New permissions</param>
/// <param name="throwOnError">Throw an exception instead of returning an error if the operation fails</param>
/// <returns>True if the reprotection was successful or if <paramref name="throwOnError"/> is true, false otherwise</returns>
/// <exception cref="WindowsApiException">If <paramref name="throwOnError"/> is true, it is thrown when the Windows API returns an error reprotecting the memory</exception>
private bool ReprotectViewInternal(IntPtr address, IntPtr size, MemoryPermission permission, bool throwOnError)
{
ulong reprotectAddress = (ulong)address;
ulong reprotectSize = (ulong)size;
ulong endAddress = reprotectAddress + reprotectSize;
var overlaps = Array.Empty<IntervalTreeNode<ulong, ulong>>();
int count = 0;
lock (_mappings)
{
count = _mappings.Get(reprotectAddress, endAddress, ref overlaps);
}
bool success = true;
for (int index = 0; index < count; index++)
{
var overlap = overlaps[index];
ulong mappedAddress = overlap.Start;
ulong mappedSize = overlap.End - overlap.Start;
if (mappedAddress < reprotectAddress)
{
ulong delta = reprotectAddress - mappedAddress;
mappedAddress = reprotectAddress;
mappedSize -= delta;
}
ulong mappedEndAddress = mappedAddress + mappedSize;
if (mappedEndAddress > endAddress)
{
ulong delta = mappedEndAddress - endAddress;
mappedSize -= delta;
}
if (!WindowsApi.VirtualProtect((IntPtr)mappedAddress, (IntPtr)mappedSize, WindowsApi.GetProtection(permission), out _))
{
if (throwOnError)
{
throw new WindowsApiException("VirtualProtect");
}
success = false;
}
// We only keep track of "non-standard" protections,
// that is, everything that is not just RW (which is the default when views are mapped).
if (permission == MemoryPermission.ReadAndWrite)
{
RemoveProtection(mappedAddress, mappedSize);
}
else
{
AddProtection(mappedAddress, mappedSize, permission);
}
}
return success;
}
/// <summary>
/// Checks the result of a VirtualFree operation, throwing if needed.
/// </summary>
/// <param name="success">Operation result</param>
/// <exception cref="WindowsApiException">Thrown if <paramref name="success"/> is false</exception>
private static void CheckFreeResult(bool success)
{
if (!success)
{
throw new WindowsApiException("VirtualFree");
}
}
/// <summary>
/// Adds an offset to a backing offset. This will do nothing if the backing offset is the special "unmapped" value.
/// </summary>
/// <param name="backingOffset">Backing offset</param>
/// <param name="offset">Offset to be added</param>
/// <returns>Added offset or just <paramref name="backingOffset"/> if the region is unmapped</returns>
private static ulong AddBackingOffset(ulong backingOffset, ulong offset)
{
if (backingOffset == ulong.MaxValue)
{
return backingOffset;
}
return backingOffset + offset;
}
/// <summary>
/// Checks if a region is unmapped.
/// </summary>
/// <param name="backingOffset">Backing offset to check</param>
/// <returns>True if the backing offset is the special "unmapped" value, false otherwise</returns>
private static bool IsMapped(ulong backingOffset)
{
return backingOffset != ulong.MaxValue;
}
/// <summary>
/// Adds a protection to the list of protections.
/// </summary>
/// <param name="address">Address of the protected region</param>
/// <param name="size">Size of the protected region in bytes</param>
/// <param name="permission">Memory permissions of the region</param>
private void AddProtection(ulong address, ulong size, MemoryPermission permission)
{
ulong endAddress = address + size;
var overlaps = Array.Empty<IntervalTreeNode<ulong, MemoryPermission>>();
int count = 0;
lock (_protections)
{
count = _protections.Get(address, endAddress, ref overlaps);
Debug.Assert(count > 0);
if (count == 1 &&
overlaps[0].Start <= address &&
overlaps[0].End >= endAddress &&
overlaps[0].Value == permission)
{
return;
}
ulong startAddress = address;
for (int index = 0; index < count; index++)
{
var protection = overlaps[index];
ulong protAddress = protection.Start;
ulong protEndAddress = protection.End;
MemoryPermission protPermission = protection.Value;
_protections.Remove(protection);
if (protection.Value == permission)
{
if (startAddress > protAddress)
{
startAddress = protAddress;
}
if (endAddress < protEndAddress)
{
endAddress = protEndAddress;
}
}
else
{
if (startAddress > protAddress)
{
_protections.Add(protAddress, startAddress, protPermission);
}
if (endAddress < protEndAddress)
{
_protections.Add(endAddress, protEndAddress, protPermission);
}
}
}
_protections.Add(startAddress, endAddress, permission);
}
}
/// <summary>
/// Removes protection from the list of protections.
/// </summary>
/// <param name="address">Address of the protected region</param>
/// <param name="size">Size of the protected region in bytes</param>
private void RemoveProtection(ulong address, ulong size)
{
ulong endAddress = address + size;
var overlaps = Array.Empty<IntervalTreeNode<ulong, MemoryPermission>>();
int count = 0;
lock (_protections)
{
count = _protections.Get(address, endAddress, ref overlaps);
for (int index = 0; index < count; index++)
{
var protection = overlaps[index];
ulong protAddress = protection.Start;
ulong protEndAddress = protection.End;
MemoryPermission protPermission = protection.Value;
_protections.Remove(protection);
if (address > protAddress)
{
_protections.Add(protAddress, address, protPermission);
}
if (endAddress < protEndAddress)
{
_protections.Add(endAddress, protEndAddress, protPermission);
}
}
}
}
/// <summary>
/// Restores the protection of a given memory region that was remapped, using the protections list.
/// </summary>
/// <param name="address">Address of the remapped region</param>
/// <param name="size">Size of the remapped region in bytes</param>
private void RestoreRangeProtection(ulong address, ulong size)
{
ulong endAddress = address + size;
var overlaps = Array.Empty<IntervalTreeNode<ulong, MemoryPermission>>();
int count = 0;
lock (_protections)
{
count = _protections.Get(address, endAddress, ref overlaps);
}
ulong startAddress = address;
for (int index = 0; index < count; index++)
{
var protection = overlaps[index];
ulong protAddress = protection.Start;
ulong protEndAddress = protection.End;
if (protAddress < address)
{
protAddress = address;
}
if (protEndAddress > endAddress)
{
protEndAddress = endAddress;
}
ReprotectViewInternal((IntPtr)protAddress, (IntPtr)(protEndAddress - protAddress), protection.Value, true);
}
}
/// <summary>
/// Checks if an access violation handler should retry execution due to a fault caused by partial unmap.
/// </summary>
/// <remarks>
/// Due to Windows limitations, <see cref="UnmapView"/> might need to unmap more memory than requested.
/// The additional memory that was unmapped is later remapped, however this leaves a time gap where the
/// memory might be accessed but is unmapped. Users of the API must compensate for that by catching the
/// access violation and retrying if it happened between the unmap and remap operation.
/// This method can be used to decide if retrying in such cases is necessary or not.
/// </remarks>
/// <returns>True if execution should be retried, false otherwise</returns>
public bool RetryFromAccessViolation()
{
_partialUnmapLock.AcquireReaderLock(Timeout.Infinite);
bool retry = _threadLocalPartialUnmapsCount != _partialUnmapsCount;
if (retry)
{
_threadLocalPartialUnmapsCount = _partialUnmapsCount;
}
_partialUnmapLock.ReleaseReaderLock();
return retry;
}
}
}

View File

@ -0,0 +1,93 @@
using System;
using System.Runtime.InteropServices;
namespace Ryujinx.Memory.WindowsShared
{
static class WindowsApi
{
public static readonly IntPtr InvalidHandleValue = new IntPtr(-1);
public static readonly IntPtr CurrentProcessHandle = new IntPtr(-1);
[DllImport("kernel32.dll", SetLastError = true)]
public static extern IntPtr VirtualAlloc(
IntPtr lpAddress,
IntPtr dwSize,
AllocationType flAllocationType,
MemoryProtection flProtect);
[DllImport("KernelBase.dll", SetLastError = true)]
public static extern IntPtr VirtualAlloc2(
IntPtr process,
IntPtr lpAddress,
IntPtr dwSize,
AllocationType flAllocationType,
MemoryProtection flProtect,
IntPtr extendedParameters,
ulong parameterCount);
[DllImport("kernel32.dll", SetLastError = true)]
public static extern bool VirtualProtect(
IntPtr lpAddress,
IntPtr dwSize,
MemoryProtection flNewProtect,
out MemoryProtection lpflOldProtect);
[DllImport("kernel32.dll", SetLastError = true)]
public static extern bool VirtualFree(IntPtr lpAddress, IntPtr dwSize, AllocationType dwFreeType);
[DllImport("kernel32.dll", SetLastError = true)]
public static extern IntPtr CreateFileMapping(
IntPtr hFile,
IntPtr lpFileMappingAttributes,
FileMapProtection flProtect,
uint dwMaximumSizeHigh,
uint dwMaximumSizeLow,
[MarshalAs(UnmanagedType.LPWStr)] string lpName);
[DllImport("kernel32.dll", SetLastError = true)]
public static extern bool CloseHandle(IntPtr hObject);
[DllImport("kernel32.dll", SetLastError = true)]
public static extern IntPtr MapViewOfFile(
IntPtr hFileMappingObject,
uint dwDesiredAccess,
uint dwFileOffsetHigh,
uint dwFileOffsetLow,
IntPtr dwNumberOfBytesToMap);
[DllImport("KernelBase.dll", SetLastError = true)]
public static extern IntPtr MapViewOfFile3(
IntPtr hFileMappingObject,
IntPtr process,
IntPtr baseAddress,
ulong offset,
IntPtr dwNumberOfBytesToMap,
ulong allocationType,
MemoryProtection dwDesiredAccess,
IntPtr extendedParameters,
ulong parameterCount);
[DllImport("kernel32.dll", SetLastError = true)]
public static extern bool UnmapViewOfFile(IntPtr lpBaseAddress);
[DllImport("KernelBase.dll", SetLastError = true)]
public static extern bool UnmapViewOfFile2(IntPtr process, IntPtr lpBaseAddress, ulong unmapFlags);
[DllImport("kernel32.dll")]
public static extern uint GetLastError();
public static MemoryProtection GetProtection(MemoryPermission permission)
{
return permission switch
{
MemoryPermission.None => MemoryProtection.NoAccess,
MemoryPermission.Read => MemoryProtection.ReadOnly,
MemoryPermission.ReadAndWrite => MemoryProtection.ReadWrite,
MemoryPermission.ReadAndExecute => MemoryProtection.ExecuteRead,
MemoryPermission.ReadWriteExecute => MemoryProtection.ExecuteReadWrite,
MemoryPermission.Execute => MemoryProtection.Execute,
_ => throw new MemoryProtectionException(permission)
};
}
}
}

View File

@ -0,0 +1,24 @@
using System;
namespace Ryujinx.Memory.WindowsShared
{
class WindowsApiException : Exception
{
public WindowsApiException()
{
}
public WindowsApiException(string functionName) : base(CreateMessage(functionName))
{
}
public WindowsApiException(string functionName, Exception inner) : base(CreateMessage(functionName), inner)
{
}
private static string CreateMessage(string functionName)
{
return $"{functionName} returned error code 0x{WindowsApi.GetLastError():X}.";
}
}
}

View File

@ -54,9 +54,9 @@ namespace Ryujinx.Tests.Cpu
_currAddress = CodeBaseAddress;
_ram = new MemoryBlock(Size * 2);
_memory = new MemoryManager(1ul << 16);
_memory = new MemoryManager(_ram, 1ul << 16);
_memory.IncrementReferenceCount();
_memory.Map(CodeBaseAddress, _ram.GetPointer(0, Size * 2), Size * 2);
_memory.Map(CodeBaseAddress, 0, Size * 2);
_context = CpuContext.CreateExecutionContext();
Translator.IsReadyForTranslation.Set();

View File

@ -49,9 +49,9 @@ namespace Ryujinx.Tests.Cpu
_currAddress = CodeBaseAddress;
_ram = new MemoryBlock(Size * 2);
_memory = new MemoryManager(1ul << 16);
_memory = new MemoryManager(_ram, 1ul << 16);
_memory.IncrementReferenceCount();
_memory.Map(CodeBaseAddress, _ram.GetPointer(0, Size * 2), Size * 2);
_memory.Map(CodeBaseAddress, 0, Size * 2);
_context = CpuContext.CreateExecutionContext();
_context.IsAarch32 = true;